Разновидности водяных насосов. Центробежные насосы Типы водяных насосов по конструкции и назначению

Насос - гидравлическая машина, предназначенная для перемещения жидкости под напором. Механическая энергия, подводимая к валу в насосе преобразуется в энергию потока жидкости.

За счет переданной энергии жидкость может пониматься на заданную высоту, перекачиваться на значительные расстояния или циркулировать в рабочем контуре.

В связи с широкими областями применения и большим разнообразием конструкций классификация насосов является не самой простой и однозначной задачей. Вследствие этого насосы классифицируются по различным признакам.

Классификация насосов по принципу действия

Наиболее распространенной является классификация насосов по принципу работы. Согласной этой классификации все многообразие конструкций насосов можно разделить на две основные группы: .

  • Объемные
    • Возвратно-поступательные
    • Вращательные (ротоные)
      • Роторно-поступательные
        • Шиберные
        • Роторно-поршневые
      • Роторно-вращательные
        • Зубчатые
  • Динамические
      • Трения
    • Классификация согласно ГОСТ 17398-72 Насосы. Термины и определения

      В приложении к ГОСТ 17398-72 представлена классификация насосов по принципу действия и конструкции, согласно ней насосы делят на два основных класса, объемные и динамические. В каждом из классов можно выделить несколько групп по различным признакам.


      Виды насосов по размеру

      В зависимости от основных параметров - мощности, подачи разделяют следующие виды насосов:

      Классификация насосов по назначению

      Насосы, использующиеся в системах водоснабжения, канализации, коммунальном хозяйстве классифицируют по назначению:

      • Общего назначения для пресной воды
        • Центробежные
          • Консольные
          • Двухстороннего входа
          • Вертикальные
            • Регулируемые
            • Нерегулируемые
          • Диагональные
        • Осевые
          • Вертикальные
            • Регулируемые
            • Нерегулируемые
          • Горизонтальные
        • Вихревые
        • Центробежно-вихревые
        • Многоступенчатые
      • Скваженные
        • Скваженные погружные
        • Скваженные с выносным электродвигателем (над скважиной)
      • Для энергосистем
        • Питательные
        • Конденсаторные
        • Сетевые
      • Для стоячих жидкостей
        • Горизонтальные
        • Вертикальные
      • Для абразивных смесей
        • Грунтовые горизонтальные однокорпусные
          • С нормальным проходным сечением
          • С увеличенным проходным сечением
        • Песковые
          • Горизонтальные
          • Вертикальные
      • Для волокнистых масс
        • Центробежные для бумажно массы
        • Центробежные консольные
          • Для жидкостей с объемно концентрацией твердых частиц на более 0,1 %
          • Для жидкостей с объемно концентрацией твердых частиц на более 1,5 %
        • Центробежные герметичные
          • Горизонтальные
          • Вертикальные
        • Осевые горизонтальные нерегулируемые
      • Опускные
        • Моноблочные для загрязненных вода
      • Дозировочные
        • Поршневые
        • Плунжерные
        • Сильфонные
  • Насосом называется гидравлическое устройство, предназначенное для всасывания, напорного перемещения или нагнетания жидкости посредством сообщения ей внешней кинетической или потенциальной энергии.

    Виды насосов для воды различают по имеющимся у них техническим параметрам, к которым относят:

    • количество жидкости, которое перемещает насос в единицу времени;
    • развиваемое давление или максимальный напор;
    • мощность.

    История изобретения

    Первые виды насосов появились еще в 1-м веке до н. э. Они помогали в тушении пожаров. Однако вплоть до 18-го в. подобные устройства использовались крайне редко.

    Все изменилось после изобретения паровой машины и увеличения потребности в воде. Различные виды насосов стали вытеснять водоподъемные устройства и нашли широкое применение в хозяйственной деятельности человека. Со временем требования к гидравлическим механизмам становились все более разнообразными. С развитием технической мысли наметились и основные виды насосов. В их число входили поршневые, вращательные, а также машины, не имеющие движущихся рабочих органов.

    Достижения науки и техники привели к тому, что на сегодняшний день существует множество различных видов насосов. Что они представляют собой, каково их основное предназначение, рассмотрим в данной статье.

    Бытовые и промышленные гидравлические машины

    Существующие на сегодняшний день виды насосов имеют различную классификацию. Одна из них касается сферы применения подобных устройств и выделяет из них бытовые и промышленные. Первые из этих машин применяются для канализации, отопления и водоснабжения в жилых и производственных помещениях.

    Промышленные насосы предназначаются для использования в различных системах и установках. Их применяют для подачи воды, перекачки нефтепродуктов и агрессивных веществ, а также для осуществления многих других специфических действий.

    Насосы объемного действия

    Еще одна классификация гидравлических машин учитывает их конструктивные особенности и принцип действия. Какие виды насосов в этом случае являются основными? Это объемные и динамические гидравлические машины.

    В первых из них рабочим органом служит камера. Под действием возникающих сил давления она изменяется в объеме, что и приводит к принудительному перемещению вещества.

    Все объемные насосы (виды, типы мы рассматриваем) предназначены для подачи вязких жидкостей. Принцип действия подобных устройств основан на преобразовании энергии. Она передается от двигателя к перекачиваемой жидкости.

    Объемные насосы являются высоконапорными. В процессе их работы возникает значительная вибрация, для гашения которой устройство ставится на массивный фундамент. Однако преимущество данных насосов кроется не только в их большой мощности. Подобные устройства способны осуществлять сухое всасывание.

    Типы объемных насосов

    Существуют различные устройства, в которых рабочий орган представляет собой камеры. Среди них такие агрегаты:

    1. Роторные . Это насосы, имеющие фиксированный корпус, в котором заключены лопатки, лопасти и другие похожие детали. Перемещению жидкости в данном случае способствует движение роторов.
    2. Шестеренные . Это наиболее простой тип насосов, имеющих принудительное смещение. Данные устройства перемещают жидкость в процессе изменения объемов полостей шестерен, сцепленных между собой.
    3. Импеллерные . Если посмотреть на такой насос в разобранном виде, то можно увидеть рабочее колесо, лопасти которого выполнены из эластичного материала. Оно находится внутри эксцентрического корпуса. Что происходит при работе подобного устройства? Лопасти сгибаются и, вращаясь, вытесняют жидкость.
    4. Кулачковые . В этих насосах происходит вращение двух независимых роторов, что и способствует перемещению жидкости по рабочей камере. Кулачковые механизмы находят широкое применение при изготовлении молочных продуктов, напитков, джемов и т. д. И все это благодаря их возможности перекачивания жидкости, имеющей большие включения. Также подобный тип насосов находит применение в фармакологической промышленности.
    5. Перистальтические . В этих насосах основной рабочей деталью служит многослойный гибкий рукав, изготовленный из эластомера. При включении двигателя в таком устройстве начинает вращаться вал с роликами. Они пережимают рукав, способствуя перемещению жидкости, находящейся внутри него.
    6. Винтовые . В корпус этих насосов вставлен выполненный из эластомера статор. В нем находится металлический ротор, имеющий винтообразную форму. Каким образом в данном случае будет происходить перекачка жидкости? После включения мотора начинает вращаться ротор, изменяя объем внутренних полостей. При этом и происходит перемещение жидкости.

    Динамические насосы

    Для этих устройств характерно двойное преобразование энергии. Вначале она передается жидкости в кинетической форме. При этом перемещающийся внутри насоса поток увеличивает свою скорость. Далее происходит частичное преобразование энергии жидкости в статическую форму. При этом скорость потока уменьшается при возрастающем давлении. Подобные устройства, в отличие от объемных, не способны производить сухое всасывание.

    Центробежные гидравлические машины

    Рассмотрим виды насосов Самыми распространенными из них являются центробежные устройства. Эти насосы используются для подачи горячей или холодной воды, а также для перекачки агрессивных и вязких жидкостей, сточных вод и смесей воды со шлаками, с грунтом, торфом и т. д.

    Как же происходит работа центробежного насоса? Находясь между лопастями вращающегося рабочего колеса, частицы жидкости получают от него кинетическую энергию. При этом возникает центробежная сила. Она перемещает жидкость далее в корпус мотора. Такая работа происходит непрерывно благодаря давлению, обеспечивающему постоянную подачу в насос новых частиц жидкости.

    По своему назначению центробежные насосы классифицируются на:

    • используемые в работе эксплуатационного оборудования ТЭС;
    • различного технического назначения.

    Какие бывают виды центробежных насосов, относящихся к первой группе? Устройства, используемые для циркуляции воды, подразделяют на циркуляционные и рециркуляционные. Насосы, устанавливаемые для теплопередачи, делятся на бойлерные и сетевые. При приготовлении питьевой воды используются конденсатные центробежные насосы, а в системе подпитки серводвигателей паровых турбин - нагнетательные.

    Какие устройства применяют для различных технических целей? Это такие виды центробежных насосов как хозяйственные, пожарные, дренажные и т. д.

    В последнее время появились новые разработки подобных устройств. Среди них особой популярностью пользуются песковые центробежные насосы. Они применяются для перекачки гидросмесей. Именно поэтому подобные насосы устанавливают в тех местах, где в воде имеется песок, а также всевозможные твердые вещества промышленного происхождения.

    Вихревые гидравлические устройства

    Эти динамические насосы аналогичны по своим характеристикам центробежным, но, в отличие от них, имеют меньшую массу и габариты. Из недостатков вихревых насосов можно выделить низкий КПД, который в рабочем режиме не превышает пятнадцати процентов. Кроме того, подобные механизмы не способны перекачивать жидкость, содержащую абразивные частицы, так как это приводит к быстрому изнашиванию внутренних деталей.

    Струйные гидравлические устройства

    Эти насосы, в отличие от множества других подобных машин, не способны создать на выходе избыточного давления. Их принцип работы сводится к превращению потенциальной энергии жидкости в кинетическую. При этом в струйных насосах нет никаких движущихся деталей. Основной рабочий механизм в устройствах подобного типа - струя жидкости или газа.

    Такие насосы могут быть водоструйными (например, гидроэлеваторы). В них рабочая жидкость передает свою кинетическую энергию перекачиваемому веществу. Среди струйных насосов есть и эрлифты. В них компрессором подается Далее водовоздушная смесь приводится в движение пузырьков воздуха.

    Водные насосы

    Эти устройства имеют множество видов. Но в основном специалисты классифицируют их по назначению. Так, существуют следующие виды насосов для воды:

    • циркуляционные , используемые для принудительного движения жидкости в системах кондиционирования, горячего водоснабжения и отопления;
    • водоподъемные , необходимые для извлечения жидкости из колодцев и скважин, которые бывают погружными и поверхностными;
    • дренажные , применяемые для откачивания воды из колодцев, канализации и подвалов.

    Виды насосов для воды поверхностного типа специалисты подразделяют на используемые для:

    • повышения давления;
    • холодного водоснабжения;
    • систем пожаротушения.

    Выбирая насосы, виды, характеристики и другие параметры устройств необходимо учесть в зависимости от их предназначения. Так, иногда машине придется работать в автономных условиях. А в некоторых случаях будет обеспечен ее доступ к электрической сети.

    Именно поэтому существуют такие виды водяных насосов, которые работают на двигателях внутреннего сгорания. Их называют мотопомпами. При этом они подразделяются на бензиновые и дизельные. Есть и электрические насосы. Их работа полностью зависит от напряжения в сети.

    Однако основная классификация насосов касается определения того места, которое они занимают относительно источника подачи. По этому параметру их и подразделяют на поверхностные и погружные. Рассмотрим эти типы устройств подробнее.

    Поверхностные насосы

    Эти устройства получили широкое распространение в коттеджах, на дачах и в загородных домах. Их используют для повышения давления в сети водопровода, а также для полива и орошения земельного участка. С их помощью поднимают воду из колодцев, скважин и открытых водоемов, располагаемых на расстоянии до восьми метров от оси насоса.

    Существует множество видов подобных устройств. Например, по способу перекачивания воды и внутреннему устройству они классифицируются на вихревые и бочковые, дренажные и циркуляционные, а также консольные (центробежные). Наиболее популярны у дачников последние два типа. Эти агрегаты просты в эксплуатации, компактны и экономичны, а при присоединении их к специальной системе автоматики получаются полноценные станции.

    Поверхностные насосы состоят из следующих основных компонентов:

    1. Шланг . Это своеобразный водоносный путь от места, где происходит непосредственный забор жидкости до самого насоса и далее до точек пересечения с водопроводной системой или до водоразбора.
    2. Эжектор . Это специальное устройство, призванное улучшить циркуляцию и давление в насосе за счет увеличения глубины всасывания.
    3. Корпус . Его чаще всего выполняют из композиционных материалов, чугуна, алюминия или нержавеющей стали. При работе агрегата в течение круглого года, в зимнее время корпус требует защиты от холода.
    4. Двигатель . Он может быть внутреннего сгорания или электрическим. Все зависит от типа насоса.

    Циркуляционные насосы

    Эту разновидность поверхностных агрегатов отличает сложное устройство. Их, как правило, используют в автономных отопительных системах с целью принудительного перемещения воды в замкнутом контуре и поддержания в нем постоянной температуры.

    По своей конструкции они имеют корпус со встроенным в него стальным или керамическим ротором, а также вал с лопастями.

    На сегодняшний день существуют следующие виды циркуляционных насосов:

    • с «мокрым» ротором;
    • с «сухим» ротором.

    Первые из них практически бесшумны, экономичны, дешевы и просты в эксплуатации. Их рабочий элемент сконструирован таким образом, что находится в воде, которая смазывает все детали и одновременно охлаждает двигатель. Но у подобных агрегатов имеется существенный недостаток. Дело в том, что при прекращении циркуляции жидкости двигатель может перегреться. Кроме того, КПД у таких агрегатов находится на крайне низком уровне.

    Все виды тепловых типа с «сухим» ротором имеют встроенный вентилятор. Их двигатель конструктивно изолирован от поступающей жидкости. При этом смазка всех движущихся деталей производится при помощи масла.

    В свою очередь, подобные насосы подразделяют на:

    • консольные, в которых двигатель располагается отдельно от корпуса;
    • моноблочные, где корпус и двигатель также разделены, но находятся при этом в одном блоке;
    • inline-насосы, отличающиеся от двух предыдущих своей повышенной герметичностью.

    Погружные насосы

    Подобные агрегаты незаменимы в тех случаях, когда пласты воды залегают на глубине, превышающей отметку 8 м. Погружные насосы опускают в скважину вместе с напорной трубой. Далее под давлением, созданным гидравлическим устройством, вода поступает в дом.

    Все виды погружных насосов высокопроизводительны, кроме того, обладают эффективным и качественным охлаждением. По своему внутреннему устройству погружные насосы классифицируются на:

    • центробежные, в которых вода вращается вместе с лопастями рабочего колеса и подается наружу под высоким давлением;
    • вибрационные, в которых жидкость всасывается за счет вибрационного и электромагнитного механизма.

    Состоят такие насосы из корпуса, двигателя и выключателя. В дренажных и канализационных насосах дополнительно устанавливается измельчитель или режущий механизм, предназначенный для недопущения нахождения в жидкости твердых веществ, размер которых превышает 5 см.

    Гидротехнические средства пожаротушения

    К насосам, используемым для локализации очагов возгорания, предъявляются особые требования. От их конструктивного совершенства и технических параметров во многом зависит успех борьбы с огнем.

    Какие существуют виды пожарных насосов? Все зависит от условий тушения. Так, на пожарных автомобилях устанавливают агрегаты центробежного типа. Они подают огнетушащие средства без всяких пульсаций, не повышают давление при заломке или засоренности пожарного рукава, просты и надежны в эксплуатации.

    Важно также и то, что центробежные насосы, установленные на пожарных автомобилях, не нуждаются в сложном приводе от двигателя и обладают сравнительно низкой массой и габаритами. Однако такие агрегаты имеют и ряд недостатков. Они не способны самостоятельно засасывать жидкость и готовы к работе только после того как будет наполнена водой всасывающая линия.

    Какие еще существуют виды пожарных насосов? Это вспомогательные агрегаты. Их также устанавливают на пожарных автомобилях. Вспомогательные насосы позволяют заполнить корпус центробежного механизма и полость всасывающего рукава водой. Именно поэтому их работа является кратковременной. После запуска центробежного насоса они отключаются. В качестве вспомогательных устройств используются агрегаты ротационного типа и др.

    Масляные насосы

    Данные устройства предназначены для снижения сил трения, возникающих между движущимися частями двигателя. Все виды масляных насосов делят на два типа. Первый из них регулируемый. В таких насосах поддерживается постоянное давление путем изменения производительности. Второй тип масляных насосов - нерегулируемые. Они также поддерживают постоянное давление, но только с помощью редукционного клапана. Большинство современных двигателей оснащают насосами нерегулируемого типа.

    Агрегаты для перекачивания масла классифицируются и по своей конструкции. Они бывают:

    • шестеренными, с размещенными в корпусе ведущей и ведомой шестерней;
    • роторными.

    В первом из этих двух видов устройств масло попадает в корпус, где захватывается шестернями. Далее через нагнетательный клапан оно перемещается в систему.

    Производительность такого насоса находится в прямой зависимости от той частоты, с которой вращается коленвал. После того как давление нагнетаемого в агрегат масла превысит определенный предел, в работу вступает Он пропускает определенную порцию масла на всасывающую лопасть или на картер двигателя.

    Что касается роторных насосов, то они могут быть как с нерегулируемым, так и с регулируемым управлением. Первый тип подобных агрегатов имеет ведущий и ведомый роторы, которые помещены в его корпус. Эти детали служат для захватывания масла, поступающего в систему. Далее, как и в шестеренном насосе, для перемещения вещества открывается редукционный клапан.

    Имеющие регулируемое управление, обеспечивают постоянное рабочее давление, которое не зависит от частоты вращения их коленвала. Для осуществления этой функции в них предусматриваются регулировочная пружина и подвижный статор. Постоянное рабочее давление создается путем изменения объема той полости, которая находится между ведущим и ведомым роторами.

    Топливные насосы

    Эти агрегаты являются основными элементами, без которых невозможна работа любого двигателя внутреннего сгорания. Их основное предназначение заключается в доставке бензина или дизеля от бака до камеры сгорания.

    Один или два топливных насоса - это обязательное оснащение каждого автомобиля. Данные агрегаты выполняют работу, принцип которой во многом зависит от особенностей их конструкции. Какие существуют виды топливных насосов? Основных из них два. Это:

    1. Механический бензонасос . Данное устройство является частью карбюраторного двигателя. По своей конструкции он является классическим поршневым насосом. Основные детали такого агрегата - корпус, разделенный на две части диафрагмой, а также два клапана для подачи и приема топлива.
    2. Электронасос . Такой тип агрегата находит свое применение в бензиновых двигателях, имеющих раздельный впрыск. Электронасосы устанавливают либо непосредственно в баке, либо в каком-либо месте топливопровода. Наибольшее распространение получили погружные топливные агрегаты. Их размещают на дне бака. В свою очередь, по типу нагнетания масла электрические насосы подразделяют на центробежные, шестеренные и роторные.

    Видов насосов немало, и все подобные устройства получили широкое распространение в той или иной сфере.

    Каждый человек, у которого есть свой участок, не раз сталкивался с такой проблемой, как отсутствие воды. Отключение воды может быть всего на несколько часов, а порой вода может отсутствовать и несколько дней, в таких случаях многие бурят скважину и ставят водяные насосы. Или же, можно столкнуться с проблемой нехватки воды во время сезона полива, как правило, напор воды в такие часы бывает очень маленьким и опять же без насоса здесь не обойтись.

    Итак, приобретая насос, вы в разы облегчаете себе труд. У вас всегда буде вода, для бытовых нужд, для питья, а также и для полива своего сада и огорода. Тем более, что на сегодняшнем рынке имеется такой большой ассортимент продукции, как отечественного, так и зарубежного производства. Насосы представлены разных типов и предназначены для различных целей, поэтому выбрать его не составит большого труда.

    Рассмотрим, каких же видов бывают водяные насосы. Делятся они на две большие категории: это бытовые насосы предназначенные для установки на собственном участке и профессиональные - большие насосы, которые устанавливают на различных производствах.

    В данной статье мы будем рассматривать более подробно бытовые насосы, т. к. речь все-таки пойдет о них. Но стоит упомянуть главное отличи е бытовых насосов от промышленных: у них более повышен моторесурс и с помощью таких насосов, возможно, перекачать большее количество кубических метров воды. Используются такие насосы для того, чтобы обеспечить большие населенные пункты водой или же какое-либо промышленное предприятие.

    • устройства для водоснабжения;
    • дренажные насосы;
    • циркуляционные насосы.

    По принципу работы насосы разделяют на:

    • колодезные;
    • скважинные;
    • самовсасывающие;
    • ручные.

    По способу забора воды насосы бывают:

    • наружные;
    • погружные;
    • инжекторные.

    Рассмотрим более подробно насосы по способу забора воды.

    Наружные насосы

    Наружные насосы используются для забора воды из колодцев, открытых водоемов, систем водоснабжения. При работе насоса, вода всасывается в трубу, один конец которой находится в воде. Глубина, с которой он способен всасывать воду, высота, на которую он может поднять столб воды, а также его производительность полностьюзависят от его мощности. В свою очередь наружные насосы тоже разделяются на два типа: вихревые и центробежные . Первые используются для добычи воды из мелких скважин, а вот вторые могут справиться с откачивание воды с более глубоких скважин.

    Достоинства наружных насосов:

    • без труда закачивает воду на высоту от 15 до 20 метров;
    • насос легок в обслуживании;
    • просто монтируется.

    Недостатки наружных насосов:

    • с его помощью невозможно откачать воду с глубины более чем 7−8 метров;
    • очень шумно работает электродвигатель, есть, конечно, вариант приобрести бесшумный насос, но цена его будет в разы выше.

    Погружные насосы

    Погружные насосы, также как и наружные, используются для забора воды из колодцев и скважин. По самому названию можно понять, что такой насос погружается непосредственно в саму воду, благодаря чему ему не нужно обеспечивать защиту сухого хода.

    Достоинства погружных насосов:

    • с необычайной легкостью, такой насос в состоянии поднять воду с большой глубины , справится даже с глубиной в 40−50 метров;
    • бесшумная работа двигателя насоса;
    • не занимает много места;

    Одним самым большим недостатком погружных насосов считается его высокая стоимость по сравнению с наружным.

    Инжекторные насосы

    Инжекторные насосы применяются в том случае, если есть необходимость откачивать воду с глубины более чем 10 метров. Отличается инжекторный насос тем, что всасываемых труб у него две: одна большего диаметра, а другая меньшего. На концах обеих труб имеется специальная насадка - инжектор. Благодаря этой насадке насос может откачивать воду с большей глубины.

    Достоинства инжекторных насосов:

    • доступные, надежные и простые в установке;
    • безопасные;
    • обеспечивают подъем воды с большой глубины;
    • подходят для применения в бытовых нуждах;
    • обладают большой производительностью;
    • расход электроэнергии снижен.

    Конструкция водяного насоса

    Ели рассматривать водяной насос с точки зрения машиностроения, то он представляется собой гидравлическую машину, которая предназначена для перекачивания воды в горизонтальном или вертикальном направлении. Для того, чтобы вода начала движение в том или ином направлении, ее необходимо сообщить определенную кинетическую энергию. Исходя из этого, водяной насос можно представить как устройство, которое преобразует электрическую энергию в кинетическую энергию, за счет которой движется жидкость.

    По принципу действия насосы разделяют на центробежные и вибрационные.

    К примеру, центробежный насос состоит из таких элементов как:

    • рабочая камера;
    • рабочее колесо;
    • направляющий аппарат;
    • вал насоса;
    • нагнетательный патрубок;
    • корпус насоса;
    • всасывающий патрубок.

    А вот вибрационные насосы имеют в своей конструкции гибкую мембрану, которая разделяет рабочую емкость. С одной стороны мембраны находится механизм, который приводит ее в движение, а с другой - область с водой.

    Популярные производители водяных насосов

    Одним из популярных производителей водяных насосов считается итальянская фирма Calpeda . Она считается признанным лидером на мировом рынке насосного оборудования. Насосы, которые производит эта фирма, считаются самыми надежными в мире. Изготавливаются они при помощи высокоточного оборудования, на производстве работает высококвалифицированный персонал и, к тому же, компания славится хорошими техническими традициями. Абсолютно все материалы и запчасти для насосов Calpeda произведены в Италии.

    Помимо этой узнаваемой марки, есть еще и такие как Gardena или Makita , которые также являются довольно таки узнаваемыми марками. Являются стабильными и надежными компаниями, которые на сегодняшний день только наращивают свой потенциал.

    Стоимость водяных насосов их сравнение

    Цены на водяные насосы могут быть абсолютно разные, зависит цена от:

    • мощности двигателя;
    • типа насоса;
    • марки производителя.

    Поэтому прежде чем покупать тот или иной насос, стоит для начала определиться, какого типа насос вам нужен, также необходимо знать его мощность, а затем уже рассматривать насосы различных производителей.

    Например, водяной насос погружного типа Gardena на 900 Вт с максимальной производительностью 5500 л/ч будет стоить в пределах 8 тысяч рублей. Насос этой же марки только мощностью в 500 Вт будет стоить уже в пределах 4 тысяч рублей.

    Если рассматривать насосы поверхностного типа, они по мощности идут больше, соответственно и цена на них выше. К примеру, насос той же марки поверхностного типа потребляемой мощности 1000 Вт стоит в районе 15 000 - 17 000 рублей. При этом цена может быть завышена, если насос имеет какие-то особенности, например автоматический контроль за уровнем воды.

    Насос поверхностного типа марки Makita мощностью 710 - 750 Вт стоит почти также как и Gardena, при этом имеет меньшую мощность, но обладает низким уровнем шума.

    Исходя из всего вышесказанного, при покупке насоса, в первую очередь стоит определиться с его типом. Необходимо знать, откуда вы будете выкачивать воду, после чего уже и делать выбор относительно того или иного типа насоса. Также стоит знать, какой примерно объем воды будет выкачивать насос. А затем уже выбирать марку производителя и сравнивать цены на них.

    Раздел первый. НАСОСЫ

    ГЛАВА 1

    НАЗНАЧЕНИЕ, ПРИНЦИП ДЕЙСТВИЯ

    И ОБЛАСТИ ПРИМЕНЕНИЯ НАСОСОВ РАЗЛИЧНЫХ ТИПОВ § 1. ОСНОВНЫЕ ПАРАМЕТРЫ И КЛАССИФИКАЦИЯ НАСОСОВ

    Насосы представляют собой гидравлические машины, предназначенные для перекачивания жидкостей. Преобразуя механическую энергию приводного двигателя в механическую энергию движущейся жидкости, насосы поднимают жидкость на определенную высоту, перемещают ее на необходимое расстояние в горизонтальной плоскости или заставляют циркулировать в какой-либо замкнутой системе.

    Выполняя одну или несколько упомянутых функций, насосы в любом случае входят в состав оборудования насосной станции, принципиальная схема которой применительно к условиям водоснабжения и канализации изображена на рис. 1. 1. В этой схеме для привода насоса исполь-

    Рис. 1.1. Принципиальная схема насосной станции

    1 - водоприемник; 2 - насос; 3 - приводной электродвигатель; 4- силовой понижающий трансформатор; 5- ЛЭП; 6 -валорный трубопровод; 7 -эодовыпуюк

    зуется электродвигатель, подключенный к электрической сети. Вода для другая.рабочая жидкость всасывается насосом из нижнего бассейна и перекачивается по напорному трубопроводу в верхний бассейн за счет преобразования энергии двигателя в энергию жидкости. Энергия ¦" жидкости после насоса всегда больше, чем энергия перед насосом.

    Основными, параметрами насосов, определяющими диапазон изменения режимов работы насосной станции, состав ее оборудования и конструктивные особенности, являются напор, подача, мощность и коэффициент полезного- действия.

    Напор представляет собой разность удельных энергий жидкости & сечениях после и до насоса, выраженную в метрах. Напор, создаваемый насосом, определяет предельную высоту подъема или дальность перекачки, жидкости (соответственно Я и L; см. рис. 1.1).



    П о д а ч а, т. е. объем жидкости, подаваемой насосом в напорный трубопровод в единицу времени, измеряется обычно в л/с или м 3 /ч.

    Мощность, затрачиваемая насосом, необходима для создания нужного капора и преодоления всех видов потерь, неизбежных при преобразовании подводимой к насосу механической энергии в энергию движения жидкости по всасывающему и напорному трубопроводам. Измеряемая в кВт мощность насоса определяет мощность приводного двигателя и суммарную (установленную) мощность насосной станции.

    Коэффициент полезного действия учитывает все виды потерь, связанных с преобразованием механической энергии двигателя в энергию движущейся жидкости. КПД определяет экономическую целесообразность эксплуатации насоса при изменении остальных его рабочих параметров (напора, подачи, мощности).

    История возникновения и развития насосав показывает, что первоначально они предназначались исключительно для подъема воды. Однако в настоящее время область их применения настолько широка и многообразна, что определение насоса как машины для перекачки воды было бы односторонним. Помимо.водоснабжения и канализации городов, промышленных предприятий и электростанций насосы применяются для орошения и осушения земель, гидроаккумулирования энергии, "транспортирования материалов. Существуют питательные насосы котельных установок тепловых электростанций, судовые насосы, специальные насосы для нефтяной, химической, бумажной, пищевой и других отраслей промышленности. Насосы используются при производстве строительных работ (намыв земляных сооружений, водопонижение, «откачка "воды, из котлованов, подача бетона и строительных растворов к сооружениям и т.п.), при разработке месторождений и транспортировании полезных ископаемых гидравлическим способом, при гидроудалении «отходов производственных предприятий. В качестве вспомогательных устройств насосы служат для обеспечения смазки и охлаждения машин.

    Таким образом, насосы являются одним из наиболее распространенных видов машин, причем их конструктивное разнообразие чрезвычайно велико. Поэтому классификация насосов по их назначению весьма затруднительна. Более логичной представляется классификация, основанная на различиях в принципе действия. С этой точки зрения все существующие в настоящее время насосы могут быть разделены на следующие ¦основные группы: лопастные насосы, объемные насосы и струйные насосы. Особую группу составляют водоподъемники некоторых специальных типов.



    Лоп астные насосы преобразуют энергию за счет динамического взаимодействия потока перекачиваемой жидкости и лопастей вращающегося колеса, которое и является основным рабочим органом насоса.

    Объемные насосы работают по принципу вытеснения, который заключается в создании гидравлической системы, имеющей изменяющийся объем. Если этот объем заполнить перекачиваемой жидкостью, а -затем его уменьшать, то жидкость будет вытесняться в напорный трубопровод.

    Струйные насосы работают по принципу смешения потока перекачиваемой жидкости со струей жидкости, пара или газа, обладающей «большим запасом кинетической энергии.

    Необходимо отметить, что, несмотря на большие различия в принципе действия, конструкции насосов всех типов, включая насосы, применяемые в системах водоснабжения и канализации, должны удовлетворять требованиям, к числу которых в первую очередь относятся:

    надежность и долговечность работы;

    экономичность и удобство эксплуатации;

    изменение рабочих параметров в широких пределах при условии сохранения высокого КПД;

    минимальные габариты и вес;

    простота устройства, заключающаяся в минимальном числе деталей и полной их взаимозаменяемости;

    удобство монтажа и демонтажа.

    Выбор типа насоса в каждом конкретном случае производится с учетом его эксплуатационных и конструктивных качеств, наиболее полно удовлетворяющих технологическому назначению рассматриваемой насосной станции.

    § 2. СХЕМЫ УСТРОЙСТВА И ПРИНЦИП ДЕЙСТВИЯ ЛОПАСТНЫХ НАСОСОВ

    К числу лопастных насосов, серийно выпускаемых отечественной промышленностью и нашедших наибольшее распространение при сооружении современных систем водоснабжения и канализации, относятся центробежные, осевые и вихревые насосы. Как уже отмечалось ранее г работа этих насосов основана на общем принципе - силовом взаимодействии лопастей рабочего колеса с обтекающим их потоком "Перекачиваемой жидкости. Однако механизм этого взаимодействия у насосо& перечисленных типов различен, что, естественно, приводит к существенным различиям в их конструкциях и эксплуатационных показателях.

    Центробежные насосы. Основным рабочим органом центробежного насоса, один из возможных вариантов конструкции которого схематически изображен на рис. 1.2, является свободно вращающееся внутри корпуса колесо, насаженное на вал. Рабочее колесо состоит из двух дисков (переднего и заднего), отстоящих на некотором расстоянии друг от друга. Между дисками, соединяя их в единую конструкцию, находятся лопасти, плавно изогнутые в сторону, противоположную направлению вращения колеса. Внутренние поверхности дисков и боковые поверхности лопастей образуют так называемые межлопастные каналы колеса, которые для нормальной работы должны быть заполнены перекачиваемой жидкостью.

    При вращении колеса на каждый объем жидкости массой т, находящийся в межлопастном канале на расстоянии г от оси вала, будет действовать центробежная сила, определяемая выражением

    Рц = /ЛСй а Г, (1.1)

    где ш - угловая скорость вращения вала.

    Под действием этой силы жидкость выбрасывается из рабочего колеса, в результате чего в центре колеса создается разрежение, а в периферийной его части - повышенное давление. Для обеспечения непрерывного потока жидкости через насос необходимо обеспечить подвод перекачиваемой жидкости к рабочему колесу и отвод ее от него.

    Жидкость подводят через отверстие в переднем диске рабочего колеса с помощью всасывающего патрубка и всасывающего трубопровода. Движение жидкости по всасывающему трубопроводу происходит вследствие разности давлений над свободной поверхностью жидкости в приемном бассейне (атмосферное) и в центральной области колеса (разрежение) ..

    Для отвода жидкости корпус насоса имеет расширяющийся спиральный канал (в форме улитки), в который и поступает жидкость, выбрасываемая из рабочего колеса. Спиральный канал (отвод) переходит в короткий диффузор, образующий напорный патрубок, соединяемый обычно с напорным трубопроводом.

    Анализ уравнения (1.1) показывает, что центробежная сила, а следовательно, и напор, развиваемый насосом, тем больше, чем больше частота вращения и диаметр рабочего колеса. В качестве привода центробежного насоса можно использовать любой вьгсокооборотный двигатель. Чаще всего для этой цели применяют электродвигатели.

    В зависимости от требуемых параметров, назначения и условий работы в настоящее время разработано большое число разнообразных конструкций центробежных насосов, которые можно классифицировать по нескольким признакам.

    По числу рабочих колес различают одноступенчатые (см. рис. 1.2) и многоступенчатые насосы.

    В многоступенчатых насо-сах перекачиваемая жидкость проходит последовательно через ряд рабочих колес, насаженных на общий вал. Создаваемый таким насосом напор равен сумме напоров, развиваемых

    Рис. 1.2. Центробежный насос

    / - колесо; 2 - лопасти; 3 - вал; 4 - хариус; 5 - всасывающий патрубок; 6 - всасывающий трубопровод; 7 -.напорный патрубок; 8 - напорный трубопровод

    каждым колесом. В" зависимости от числа колес (ступеней) насосы могут быть двухступенчатыми, трехступенчатыми и т.д.

    По величине создаваемого напора центробежные насосы разделяются на низконапорные (напор до 20 м), средненапорные (20-60 м) и высоконапорные (свыше 60 м). -

    По способу подвода "жидкости к рабочему колесу различают насосы с односторонним подводом (см. рис. 1.2) и насосы с двусторонним подводом, или так называемые центробежные насосы двустороннего входа (рис. 1.3).

    По способу отвода жидкости из рабочего колеса насосы разделяются на спиральные и турбинные.

    В спиральных насосах перекачиваемая жидкость "из рабочего колеса поступает непосредственно в спиральный канал корпуса и затем либо отводится в напорный трубопровод, либо по переточным каналам поступает к следующим колесам.

    В турбинных насосах жидкость, прежде чем попасть в спиральный отвод, проходит через систему неподвижных лопаток, образующих особое устройство, называемое направляющим аппаратом.

    По компоновке насосного агрегата (расположению вала) различают насосы горизонтальные и вертикальные.

    По способу соединения с двигателем центробежные насосы разделяются на приводные (со шкивом или редуктором), соединяемые непосредственно "с двигателями с помощью муфты, и моноблочные, рабочее коле-СО" которых устанавливается на удлиненном конце вала электродвигателя.

    По роду перекачиваемой жидкости насосы бывают водопроводные, канализационные, теплофикационные (для горячей воды), кислотные, грунтовые и др.

    Напор одноступенчатых центробежных насосов, серийно выпускаемых промышленностью, достигает 120 м, подача - 15 м 3 /с. Серийные многоступенчатые насосы развивают напор до 2000 м при подаче 80-

    100 л/с. Что касается КПД, то в зависимости от конструктивного" исполнения он меняется в широких пределах - от 0,85 до 0,9 у крупных одноступенчатых насосов до 0,4-0,45 у высоконапорных многоступенчатых. Параметры центробежных насосов специального изготовления, как одноступенчатых, так и многоступенчатых, могут быть значительно выше.

    Осевые насосы. Рабочее колесо осевого насоса (рис. 1.4,а) состоит из втулки, на которой укреплено несколько лопастей, представляющих собой удобообтекаемое изогнутое крыло с закрученной передней, набегающей на поток кромкой.

    Если рассматривать идеальную жидкость, движущуюся без потерь, и считать, что- давление на бесконечном расстоянии постоянно, то при вызываемом вращением рабочего колеса перемещении профиля лопасти ъ массе жидкости, согласно уравнению Бернулли, за счет изменения скорости течения давление над профилем должно повыситься, а под профилем- понизиться. Это создает силовое воздействие лопасти на поток, результирующая которого R (рис. 1. 4, б) может быть разложена на две составляющие: силу Y, нормальную к направлению набегающего потока, которую называют подъемной силой, и силу X, направленную по потоку и называемую лобовым сопротивлением.

    Подъемная сила-, отнесенная к единице длины лопасти, определяется формулой, которая является частным случаем общей теореми


    Рис. 1.4. Осевой насос


    а -лртнцыпнальная схема устройства: 1 -

    колесо; 2 - камера; 3 - выправляющий аппарат; 4 - отвод; б-силы," действующие ва

    профиль лопасти


    SJ R


    Рис. 1.3. Проточная часть двустороннего центробежного насоса

    I - всасывающий паттрубсхк; 2 - рабочее колесо; 3 - проходной >вал; 4 - ггодшиггаииен; 5 - спиральный олвод; 6 - напорный паггрубак



    1 - колесо; 2 - корпус; 3 - полость; 4, б -«а/парный « всасывающий патрубки; 6 - уплотняющий аысгуп

    Н. Е. Жуковского о подъемной силе, действующей на тело произвольной формы:

    Y = С у р I


    Где С у - коэффициент, зависящий от формы профиля и угла атаки; р - плотность среды;

    I - длина хорды профиля Лопасти;



    яУоо - относительная скорость набегания невозмущенного потока.

    Рабочее колесо насоса вращается в трубчатой камере, благодаря чему основная масса потока в пределах колеса движется в осевом направлении, что, кстати говоря, и определило название насоса.

    Двигаясь поступательно, перекачиваемая жидкость одновременно несколько закручивается рабочим колесом. Для устранения вращательного движения жидкости служит выправляющий аппарат, через который она проходит перед выходом в коленчатый отвод, соединяемый с напорным трубопроводом. Жидкость подводится, к рабочим колесам небольших осевых насосов с помощью конических патрубков. У крупных насосов для этой цели служат камеры и изогнутые всасывающие трубы. относительно сложной формы.

    Осевые насосы выпускаются двух модификаций: с жестко закрепленными на втулке лопастями рабочего колеса и с поворотными лопастями.

    Изменение в определенных пределах угла установки лопастей рабочего колеса позволяет поддерживать высокое значение КПД насоса в широком диапазоне изменения его рабочих параметров.

    В качестве привода осевых насосов используются, как правило, электродвигатели синхронного и асинхронного типа, непосредственно соединяемые с насосом с помощью муфты. Насосные агрегаты изготовляют с вертикальным, горизонтальным или наклонным валом.

    Подача серийно выпускаемых отечественной промышленностью осевых насосов колеблется от 0,6 до 45 м 3 /с при напорах от 2,5 до 27 м.Таким образом, по сравнению с центробежными осевые насосы имеют значительно большую подачу, но меньший напор. КПД высокопроизводительных осевых насосов достигает 0,9 и выше.

    Вихревые насосы. Рабочее колесо вихревого насоса (рис. 1.5) .представляет собой плоский диск с короткими радиальными прямолинейными лопастями, расположенными на лериферии колеса. В корпусе ¦имеется кольцевая полость, в которую и входят лопасти колеса. Внутренний уплотняющий выступ, плотно примыкая к наружным торцам и боковым поверхностям лопастей, разделяет всасывающий и напорный патрубки, соединенные с кольцевой полостью.

    При вращении колеса жидкость увлекается лопастями и одновременно под воздействием центробежной силы закручивается. Таким образом, в кольцевой полости работающего насоса образуется своеобразное парное кольцевое вихревое движение, почему насос и называется вихревым. Отличительная особенность вихревого насоса заключается в том, что одна и та же частица жидкости, двигаясь по винтовой траектории, на уча-

    Рис. 1.6. Диагональный насос (¦производство ГДР)


    1 -.всасывающий тгатрубок; 2 - рабочее колесо; 3 -.корпус насоса; 4 - выправляющий аппарат; 5 -радиальный подшипник; 6 - отвод

    стке от входа в кольцевую полость до выхода из нее многократно попадает в межлопастное пространство колеса, где каждый раз получает дополнительное приращение энергии, а следовательно, и напора. Благодаря этому вихревой насос в состоянии развить напор, в 2-4 раза больший, чем центробежный насос, при одном и том же диаметре колеса, т. е-при одной и той же окружной скорости. Это, в свою очередь, приводит к значительно меньшим габаритным размерам и весу вихревых насосов сравнении с центробежными.

    Достоинством вихревых насосов является также и то, что они обладают самовсасывающей способностью, исключающей необходимость заливки корпуса и всасывающей линии насоса перекачиваемой жидкостью перед каждым пуском.

    Недостатком вихревых насосов является сравнительно невысокий-КПД (0,25-0,5) и быстрый износ их деталей при работе на жидкостях, содержащих взвешенные твердые частицы. Серийно выпускаемые вихревые насосы имеют подачу от 1 до 40 м 3 /ч и напор от 15 до 90 м.

    Отечественной промышленностью выпускаются также комбинированные центробежно-вихревые насосы, у которых в одном корпусе на одно>« валу размещаются колесо центробежного типа и вихревое рабочее колесо. В этом случае центробежная ступень создает необходимый подпор" вихревой ступени и повышает общий КПД насоса. При тех же подачах, напор центробежно-вихревых насосов достигает 300 м.

    К числу насосов, не освоенных еще в достаточной степени отечественной промышленностью, но нашедших широкое распространение в системах водоснабжения и канализации за рубежом, следует отнести так называемые диагональные насосы (рис. 1.6), у которых поток жидкости, проходящий через рабочее колесо, направлен не радиально, как у центробежных насосов, и не параллельно оси, как у осевых, а наклонно, как бы по диагонали прямоугольника, составленного из радиального и осевого направлений.

    Наклонное направление потока создает основную конструктивную особенность диагональных насосов - перпендикулярное к меридиональному потоку и наклонное к оси насоса расположение лопастей рабочего колеса. Это обстоятельство позволяет использовать при создании напора совместное.действие подъемной и центробежной сил.

    Рабочие колеса диагональных насосов могут быть закрытого (см. рис. 1.6, а) или открытого (см. рис. 1.6, б) типа. В первом случае общая конструкция колеса приближается к центробежному, а во втором - к осевому колесу. Лопасти рабочих колес открытого типа у ряда насосов выполняются поворотными, что является их несомненным преимуществом.

    Жидкость отводится от рабочего колеса диагонального насоса с помощью спирального канала, как у центробежных насосов, либо с помощью трубчатого колена, как у осевых.

    По своим рабочим параметрам (подача, напор) диагональные насосы также занимают промежуточное положение между центробежными и осевыми.

    § 3. СХЕМЫ УСТРОЙСТВА И ПРИНЦИП ДЕЙСТВИЯ ОБЪЕМНЫХ НАСОСОВ

    В зависимости от конструкции, назначения и условий работы объемные насосы могут быть классифицированы следующим образом:

    с возвратно-поступательным движением рабочего органа;

    с вращательным движением рабочего органа.

    К первой группе относятся поршневые, плунжерные и диафрагмен-ные насосы. Ко второй группе относятся шестеренные и винтовые насосы.

    Поршневой насос одностороннего действия (рис. 1.7) состоит из корпуса, внутри которого расположены рабочая камера с всасывающим л напорным клапанами и цилиндр с поршнем, совершающим возвратнопоступательное движение. К корпусу присоединены всасывающий и напорный трубопроводы. Вращательное движение вала приводного двига-

    теля преобразуется в возвратно-поступательное движение поршня с помощью классического кривошипно-шатунного механизма.

    При ходе поршня вправо в цилиндр засасывается объем жидкости,

    V - F S,

    где F - площадь поршня;

    5 - ход поршня.

    При ходе поршня влево этот же объем выталкивается в напорный трубопровод. Таким образом, насос одностороннего действия за один оборот кривошипа совершает один цикл всасывания и один цикл нагнетания (рабочий).

    Идеальная подача насоса в этом случае составляет

    Qct = F S п, (1.3)

    где п. - частота вращения кривошипа, мин - ’.

    Действительная подача Q меньше идеальной вследствие запаздывания закрывания напорного и всасывающего клапанов, утечек через клапаны, сальниковые и поршневые уплотнения, а также за счет выделения воздуха или газов из перекачиваемой жидкости. Поэтому действительная подача

    Q = 1 lo6^ Srt , О- 4)

    где т|об - объемный КПД насоса или коэффициент наполнения.

    Величина коэффициента наполнения т] 0 б зависит от размеров насоса и меняется в пределах 0,9-0,99. *

    Теоретически поршневой насос может развивать любой напор. Однако практически напор ограничивается прочностью отдельных деталей, а также мощностью двигателя, приводящего насос в действие.

    Подача поршневого насоса одностороннего действия, подсчитанная по формуле (1.3), представляет собой осредненную по времени величину. Мгновенный объем жидкости, подаваемой насосом, равен площади поршня F, умноженной на скорость его движения v. Поскольку возврат-но-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма, скорость поршня изменяется от нуля в мертвых положениях кривошипа до максимума в среднем положении. Аналогичным образом меняется во время рабочего хода поршня и подача насоса. В сочетании с полным отсутствием подачи во время цикла всасывания это обстоятельство определяет основной недостаток поршневых насосов одностороннего действия - прерывистую и неравномерную подачу.

    Изменение подачи поршневого насоса за один оборот кривошипа можно изобразить графически. Подобные графики дают возможность наглядно представить последовательность процессов нагнетания и всасывания, а также оценить степень неравномерности подачи, т.е. установить, во сколько раз"максимальная подача превосходит среднюю.

    Согласно теории кривошипно-шатунных механизмов можно считать, что изменение мгновенной скорости движения поршня во времени с достаточной степенью приближения следует синусоидальному закону

    и = г со sin а, (1.5)

    где r=S /2 - радиус кривошипа;

    оз = 2лл/60 - угловая скорость;

    a=f(t) -угол поворота кривошипа, представляющий собой функцию времени t.

    Соответственно мгновенная подача насоса

    Q = F v = F г со sin а. (1.6)

    Изменение функции (1.6) за время одного оборота кривошипа показано на рис. 1.8,а.

    а )

    Рис. >1.8. Кривые подачи поршневых насосов

    а - односггороинего действия; б -двустароанего действия; ¦прехпоршневого насоса

    Ряс. "1.9. Порпшевый насос двустороннего действия

    Заменим площадь, ограниченную синусоидой и осью абсцисс графика, площадью равновеликого прямоугольника, построенного на отрезке прямой длиной 2яг. Обе эти площади графически выражают объем жидкости, подаваемой насосом в напорный трубопровод за время одного оборота кривошипа. Высота h прямоугольника, таким образом, будет представлять в принятом масштабе величину средней подачи, а наибольшая высота синусоиды - величину максимальной подачи. Отношение максимальной подачи к средней (степень неравномерности подачи) будет:

    QMaKc _ F

    Площадь прямоугольника, согласно построению,

    2itrh = FS - F -2 г,

    h = - я

    Омя КГ F

    Qcp Fin

    т. е. у поршневого насоса одностороннего действия максимальная пода-ча превосходит среднюю в 3,14 раза.

    Существует несколько способов уменьшения неравномерности движения жидкости в системе, соединенной с поршневым насо,сом. Одним из них является применение поршневых насосов двустороннего действия (рис. 1.9), у которых камеры с клапанами располагаются по обе стороны цилиндра и поэтому движение поршня в любую сторону является рабочим: циклу всасывания в левой камере соответствует цикл нагнетания в правой, и наоборот.

    Подача поршневого насоса двустороннего действия почти вдвое больше подачи насоса одностороннего действия тех же геометрических размеров и может быть подсчитана по формуле

    Q = 1 lo6 (2F - f) Sn, (1.8)

    где f - площадь сечения штока.



    При построении графика изменения подачи поршневого насоса двустороннего действия, пользуясь теми же методами, получим две синусоиды (рис. 1.8,6).

    В этом случае

    2nrh = 2F S = 2 F-2r, я


    Следовательно,

    1,57, ¦ (1.9)

    Q cp 2 Ff я 2

    т. е. максимальная подача превосходит среднюю в 1,57 раза.

    Другим весьма эффективным способом является использование многопоршневых насосов с параллельным включением цилиндров, поршни которых приводятся в движение от общего коленчатого вала. Рассмотрим, например, диаграмму подачи трехпоршневого насоса, состоящего из трех насосов одностороннего действия, кривошипы которых расположены по отношению друг к другу под углом 120°.

    Для получения суммарной кривой подачи необходимо построить три синусоиды, сдвинутые на 120° одна по отношению к другой, и затем суммировать их ординаты (рис. 1.8, в). Площадь диаграммы, ограниченная сверху суммарной кривой, изображает подачу всеми тремя цилиндрами. Наибольшая ордината графика равна F, так как она получена от сложения двух отрезков ab и Ьс, каждый из которых составляет

    F sin 30° = 0,5 F.

    В этом случае имеем:

    Степень неравномерности подачи

    =-?- = -= 1,047. (МО)

    Qcp 3 F (тс 3

    Для обеспечения, возможно более" равномерной подачи поршневых насосов и предотвращения инерционных действий масс жидкости, заполняющей систему, практикуется также устройство воздушных колпаков. Благодаря большой упругости воздуха, находящегося в колпаке, во время цикла нагнетания происходит его-сжатие и поглощение части жидкости, превышающей среднюю подачу. ,Во время цикла всасывания воздух расширяется, и процесс вытеснения жидкости в напорный трубопровод продолжается.

    Плунжерные насосы отличаются от поршневых конструкцией вытесняющего тела. Вместо поршня- сыч имеют плунжер, представляющий собой полый цилиндр, движущийся в уплотняющем сальнике не касаясь внутренних стенок рабочей камеры. По гидравлическим параметрам поршневые и плунжерные насосы одинаковы. В эксплуатации плунжерные насосы несколько проще, так как у них меньше изнашиваемых деталей (отсутствуют поршневые кольца, манжеты и пр.).

    Диафрагменные насосы имеют вместо поршня гибкую диафрагму (мембрану) из кожи, прорезиненной ткани или из синтетического материала.

    Подача серийно выпускаемых поршневых насосов меняется от 1 до 150 м 3 /ч при напорах до 2000 м.

    Шестеренный насос схематически изображен на рис. 1.10. Рабочим органом насоса являются две шестерни: ведущая и ведомая, размещенные в корпусе с небольшими радиальными и торцовыми зазорами. При вращении колес в направлении, указанном стрелками, жидкость поступает из полости всасывания во впадины между зубьями и перемещает в напорную полость.

    Подача шестеренного насоса, состоящего из двух колес одинакового размера,"определяется выражением

    Q = 2 f I z п т]об, (1.11),

    где f - площадь поперечного сечения впадины между зубьями;

    1 - длина зуба шестерни;

    2 - число зубьев.

    Объемный КПД шестеренного насоса учитывает частичный перенос жидкости обратно в полость всасывания, а также протекание жидкости через зазоры. В среднем он составляет 0,7-0,9.

    Шестеренные насосы обладают реверсивностью, т. е. при изменении направления вращения шестерен они изменяют направление потока а трубопроводах, присоединенных к насосу.

    Винтовые насосы (рис. 1.11) имеют винты специального профиля, линия зацепления между которыми обеспечивает полную герметизацию области нагнетания от области всасывания. При вращении-винтов эта линия перемещается вдоль оси. Длина винтов для обеспечения герметичности при всех их положениях должна быть несколько больше шага винтов. Жидкость, расположенная во впадинах винтов и ограниченная корпусом и линией защемления винтов, при вращении их вытесняется в область нагнетания. В большинстве случаев винтовые насосы выполняются с тремя винтами: средний - ведущий и два боковых- ведомые. Подача винтового насоса с циклоидным зацеплением определяется выражением

    Q = 0,0691 д 4, (1.12)-

    где d B - диаметр начальной окружности винтов.

    Винтовые насосы обеспечивают равномерный график подачи жидкости во времени.

    Теоретически подача ротационных насосов, как и всех объемных насосов, не зависит от напора, ими создаваемого. В действительности наблюдается незначительное уменьшение подачи с увеличением напора, определяемое возрастанием протекания жидкости через зазоры внутри насоса. Вытеснение жидкости из насоса в наьпорный трубопровод принципиально не зависит от встречаемого сопротивления. Поэтому напор объемных насосов определяется сопротивлением внешней сети.

    § 4. СХЕМЫ УСТРОЙСТВА И ПРИНЦИП ДЕЙСТВИЯ СТРУЙНЫХ НАСОСОВ-И ВОДОПОДЪЕМНИКОВ

    Действие струйных насосов основано на принципе передачи кинетической энергии от одного потока к другому, обладающему меньшей кинетической энергией. Создание напора у насосов этого типа происходит путем непосредственного смешения обоих потоков, без каких-либо-промежуточных механизмов. В зависимости от назначения насоса рабочая и перекачиваемая среды (жидкость, пар, газ) могут быть одинаковыми или разными.

    Рассмотрим рабочий процесс струйного насоса и найдем соотношения, определяющие его основные параметры, на примере водоструйного насоса (гидроэлеватора), у которого рабочей и перекачиваемой средой является вода.

    Водоструйный насос. В водоструйном насосе.. (рис. 1.12, а) вода под большим давлением по трубе, заканчивающейся соплом, подается в подводящую камеру. Вытекая из сопла с большой скоростью в виде струи, она увлекает за собой воду, заполняющую камеру смешения*. давление в котопой атмосферного. Из камеры смеше-

    Рис. 1.12. Водоструйный насос

    1 - всасывающий трубопровод; 2 - труба; 3 - сопло; 4 -подводящая камера; 5 - камера смеше ния; 6 - диффузор; 7 - напорный трубопровод

    кия общий поток направляется в диффузор, где за счет уменьшения скорости течения создается давление, необходимое для движения жидкости по напорному трубопроводу. Постоянное заполнение подводящей камеры перекачиваемой водой происходит из приемного резервуара по всасывающему трубопроводу.

    Напор, развиваемый водоструйным насосом, согласно определению, данному в § 1, представляет собой разность удельных энергий в выходном сечении III-III и во входном /-I. Без учета потерь он может быть приравнен приращению энергии на участке между сечениями II -// и I-I камеры смешения.

    Используя уравнение Бернулли для этих двух сечений и вводя безразмерные параметры s = F K .Jf c и q - Q/Qc, где F K . C и f c -соответственно площади поперечного сечения камеры смешения и струи; Q c - расход сопла (струи), после ряда преобразований можно получить следующее выражение:

    я= - 2 g



    Действительный напор водоструйного насоса будет, конечно, меньше подсчитанного по уравнению (1.13), так как из него необходимо вычесть потери в приемной камере, камере смешения и диффузоре. Тем ие менее выражение (1.13) позволяет проанализировать изменение основных параметров водоструйных насосов. Прежде всего оно ясно показывает, что

    развиваемый насосом напор пропорционален -, т.е. напору Н с, с

    которым вода подводится к соплу. Кроме того, напор определяется относительной подачей q и геометрическим параметром s.

    На рис. 1.12, б эти соотношения построены для s== 1,5; 2,5 и 4. На графике видно, что с увеличением подачи напор, развиваемый водоструйным насосом, уменьшается; увеличение параметра s также вызывает уменьшение напора.

    КПД водоструйного насоса определяется отношением полезной энергии жидкости к подведенной. Подведенную энергию можно выразить следующим образом:

    ^ПОДВ ~ Qc Р § Hz" (1*14)

    Полезная энергия определяется напором и полезной подачей. Последнюю можно определять по-разному. Если водоструйный насос используется для откачки воды, то полезным является только расход Q, поступающий в подводящую камеру. В этом случае

    9 n = Q?gH, и К)ПД водоструйного насоса будет:

    Действительные значения К"ПД, достигаемые на практике в подобных условиях, не превышают 0,25-0,3.

    Если же водоструйный насос используется для водоснабжения или для охлаждения, то полезной является суммарная подача Q + Qc, и тогда

    3 n = (Q + Qc)pgtf. а выражение для КПД будет иметь вид:

    , (Q + Qc)# п 1П

    ¦ 11 “ Q"H" ¦ (1Л6)

    В этом случае, естественно, КПД выше и может достигать 0,6-0,7.

    Водоструйный насос (гидроэлеватор) по своему устройству весьма прост и доступен для изготовления в местных условиях. Следует, однако, иметь в виду, что для обеспечения его хорошей работы требуется правильный подбор размеров и тщательное изготовление. Существенное значение имеет форма сопла, расстояние от сопла до камеры смешения, форма камеры смешения и диффузора.

    Для транспортирования и подъема жидкостей используется также ряд устройств, которые нельзя назвать насосами в строгом понимании

    этого слова. Некоторые из них применяются в сооружениях систем водо

    снабжения и канализации. К ним в первую очередь относятся воздушные водоподъемники, гидравлические тараны и шнековые насосы.

    Воздушный подъемник (эрлифт) состоит из вертикальной трубы, нижний конец которой погружен под уровень йоды в приемном резервуаре (рис. 1.13). Внутри трубы проходит воздуховод, по которому сжатый воздух подается компрессором и распыляется с помощью форсунки, находящейся на глубине Н п. Плотность образующейся при этом воздушно-водяной смеси р см значительно меньше плотности воды,р, в результате чего смесь поднимается по трубе над уровнем воды в резервуаре на высоту. Н.

    По принципу сообщающихся "сосудов в условиях равновесия



    Н п р = [Н а Н ) Pcjj.

    Отсюда находим высоту подъема Н (напор) эрлифта:

    И = н а Р ~- Рс - . (1.17)

    Зависимость между подачей и остальными рабочими параметрами воздушного подъемника можно найти на основе следующих рассуждений.

    Энергия, передаваемая компрессором в 1 с объему Q B .arM, м 3 , воздуха, отнесенному к атмосферно.му давлению, при сжатии его от атмосферного давления р а тм до давления р, под которым он подводится к форсунке, при изотермическом процессе будет:

    , N == РатмФв.атм ^ _

    Р атм

    Производимая сжатым воздухом полезная работа заключается в подъеме Q, м 3 , воды-в 1 с, на высоту Я:

    Nn = Р g О. Н¦

    Учитывая неизбежные потери путем введения КПД эрлифта rj, можно написать:

    N n ~ N т)

    ?gQH = T\p arM Q B aTM In -- . (1.18)

    P атм

    Выражая давление p в Па при р в =ЮОО кг/м 3 и Ратм=ОД МПа, из уравнения (1.18) после ряда преобразований получим искомую зависимость:

    Q==T] 1п (0.1Я„ + 1). (1.19)

    Из формулы (=1.19) следует, что подача эрлифта уменьшается с увеличением высоты подъема Н. При постоянных напоре и заглублении эрлифта она возрастает с увеличением Q B .aTM- Казалось бы, здесь кроются неограниченные возможности увеличения Q. Однако оказывается, что при слишком большом расходе воздуха среда в водоподъемной трубе перестает быть однородной, что резко снижает эффективность эрлифта и приводит к уменьшению Q и Я.

    В табл. 1.1 приводятся ориентировочные значения необходимого погружения форсунки и объема подаваемого воздуха, обеспечивающие оптимальный режим работы эрлифта.

    ТАБЛИЦА.1.1

    Значения Н, м

    Параметры

    HJH

    0,65-0,75

    Я - Qa.aTM^

    Что касается КПД воздушного подъемника, то даже в благоприятных условиях он не превышает 0,3-0,4, а с учетом потерь в компрессоре общий КПД установки составляет обычно 0,1-0,2. Таким образом, по q энергетическим показате

    лям это не очень эффективный способ подъема воды.

    Н п п


    Рис. 1.13. подъемник

    1 - приемный бачок; 2 - воздушная тгрубка от тсом-ггрессора; 3 - водоподъемная "пруба; 4 - обсадная труба скважины; 5 - форсунка


    В то же время устройство эрлифта чрезвычайно просто, он не имеет подвижных частей и поэтому не боится попадания взвешенных частиц. Он достаточно удобен для подъема воды из скважин, особенно малого диаметра, в которые не входит ни один насос. Воздушный подъемник легко собрать на любом объекте, использовав для подачи воздуха передвижной компрессор. Диаметр водоподъемной трубы может быть определен по скорости движения смеси непосредственно над форсункой от 2,5 до 3 м/с я

    Воздушный



    I - шнек; 2 - лоток; 3 -передача; - 2

    4 - электродвигатель

    по скорости излива от б до 8 м/с; диаметр воздушной трубы принимают по скорости движения воздуха 5-10 м/с.

    Гидравлический т а р а н. В гидравлическом таране подъем воды осуществляется энергией гидравлического удара, который периодически повторяется вследствие резкого закрывания клапана под действие ем естественного потока. Непременным условием для работы тарана является расположение его ниже уровня воды в источнике.

    Таранная установка (рис. 1.14) состоит из питательной трубы, ударного и нагнетательного клапанов, воздушного колпака, напорной трубы и напорного бака.

    При пуске таранной установки в действие вода из источника поступает по питательной трубе к ударному клапану и под напором Яi вытекает из него наружу с возрастающей скоростью. При повышении скорости до некоторого предела давление в зазорах над клапаном уменьшается, а давление на клапан снизу возрастает настолько, что общая сила давления преодолевает вес клапана и резко закрывает его, преградив путь для выхода воды. При этом происходит гидравлический удар, вследствие чего давление в питательной трубе на некоторый короткий промежуток времени поднимается выше давления в воздушном колпаке, нагнетательный клапан открывается и вода поступает через него в воздушный колпак, а затем по напорному трубопроводу в верхний бак, поднимаясь на высоту Я 2 . В течение последующей фазы гидравлического удара в питательной трубе создается разрежение, и ударный клапан под действием атмосферного давления и частично собственного веса (или пружины) вновь открывается. Одновременно под давлением воды в воздушном колпаке закрывается нагнетательный клапан и таранная установка вновь приходит в исходное положение. После этого цикл повторяется автоматически. Число гидравлических ударов зависит от регулировки тарана и колеблется от 20 до 100 в 1 мин.

    Напор Н\ выбирают в зависимости от местных топографических условий- от 1 до 20 м. Длину питательной трубы принимают равной (5...

    8)Я Ь Максимальная высота подъема Я 2 достигает 100-120 м.

    Шнековый насос (рис. 1Л5). Основным рабочим органом водоподъемников этого типа является шнек, представляющий собой вал с навитой на него спиралью. Как правило, шнек выполняют с трехзаход-ной спиралью, что обеспечивает подачу воды и равнопрочность шнека при любом угле поворота. Шнек, установленный наклонно, вращается в лотке, выполняемом обычно из бетона. Окружная скорость шнека 2-

    5 м/с соответствует частоте вращения 20-100 мин -1 в зависимости от диаметра шнека. Для получения такой частоты вращения приводной электродвигатель соединяют с валом шнека через редуктор или через клиноременную передачу.

    Угол наклона шнека принимают 25-"30°, что при обычной длине шнека 10-15 м обеспечивает высоту подъема 5-8 м. Чем больше подача подъемника, тем больше должно быть поперечное сечение шнека, что увеличивает его жесткость. Поэтому при большей подаче можно принимать большую длину шнека, увеличивая тем. самым высоту подъема.

    Подач-а серийно выпускаемых за рубежом шнековых насосов колеблется от 15 до 5000 л/с при высоте подъема 6-7 м. Средний КПД шнекового насоса составляет около 0,7-0,75 и остается практически постоянным в большом диапазоне изменения подачи.

    § 5. ДОСТОИНСТВА И НЕДОСТАТКИ НАСОСОВ РАЗЛИЧНЫХ ТИПОВ

    Если говорить о возможной подаче, то по мере ее возрастания насосы располагаются в следующем порядке (рис. 1Л6): объемные насосы, центробежные насосы и осевые насосы. Если же в качестве основного параметра рассматривать максимально возможное значение напора, то порядок будет обратным. Что касается водоподъемников специальных типов, то все они, включая струйные насосы, в поле Я-Q занимают области, прилегающие к осям координат и характеризуемые малыми значениями либо напора, либо подачи. Таким образом, практически весь диапазон напоров от 1-2 до 10 000 м и подач от нескольких литров до 150 000 м 3 в 1 ч перекрывается большим числом типоразмеров, хорошо освоенных промышленностью насосов.

    В то же время при решении вопроса об использовании какого-либо насоса в той или иной технологической установке решающее" значение, помимо рабочих параметров, приобретают его эксплуатационные качества, о которых, в частности, творилось в § 1.

    Проанализируем в этой связи достоинства и недостатки рассмотренных нами насосов и определяющие области их возможного применения в сооружениях систем водоснабжения и канализации.

    ^.Лопастные насосы. Центробежные и осевые насосы обеспечивают плавную и непрерывную подачу перекачиваемой жидкости при высоких значениях коэффициента полезного действия. Относительно несложное устройство обеспечивает высокую их надежность и достаточную долговечность. Конструкция проточной части лопастных насосов и отсутствие поверхностей трения допускает возможность перекачивания загрязненных жидкостей. Простота непосредственного соединения с высо-

    1 10 100 1000 10000 100000 Orfft

    Рис. 1Л6. Пределы изменения параметров насосов различных типов

    кооборотными приводными двигателями способствует компактности насосного агрегата и повышению его КПД.

    Все эти положительные качества центробежных и осевых насосоз привели к тому, что они являются, по существу, основными насосами всех сооружений водоснабжения и канализации. Центробежные и осевые насосы широко используют также в системах оборотного движения жидкостей, в судоподъемных сооружениях, на оросительных и осушительных насосных станциях.

    К недостаткам центробежных насосов следует отнести ограниченность их применения в области малых подач и высоких напоров, что объясняется снижением КПД при увеличении числа ступеней. Известные сложности в эксплуатации насосных установок с центробежными насосами возникают также из-за необходимости их заполнения перекачиваемой жидкостью перед включением в работу.

    Эти недостатки отсутствуют у вихревых и центробежно-вихревых насосов. Однако вследствие невысокого КПД они находят применение лишь в небольших автономных системах водоснабжения и, кроме того, используются в качестве вспомогательных (см. § 44) на крупных водопроводных и канализационных насосных станциях.

    Объемные насосы. Несомненными достоинствами поршневых и плунжерных насосов являются высокий КПД и возможность подачи незначительных объемов жидкости под сколь угодно большим давлением. В то же время неравномерность подачи, сложность соединения с приводным двигателем, наличие легко изнашивающихся клапанов, тихоход-ность, а следовательно, большие размеры и.масса исключают возможность их применения на современных высокопроизводительных насосных станциях систем водоснабжения и канализации. Лишь чрезвычайно редко вертикальные поршневые насосы еще применяются для подъема воды из скважин "Малого диаметра (до 200 мм). Модифицированные поршневые насосы предназначены для подачи бетона и растворов при производстве строительных работ (см. § 36).

    Объемные насосы с вращательным движением рабочего органа конструктивно более просты и обеспечивают плавную подачу перекачиваемой жидкости. Однако очень маленькие подачи шестеренных и винтовых насосов в сочетании с их способностью перекачивать вязкие жидкости определяли область их применения в качестве питательных насосов систей гидропривода, автоматики и смазки.

    ¦Водоструйные насосы. Достоинствами гидроэлеваторов являются небольшие размеры, простота устройства, способность перекачивать жидкости с большим содержанием взвешенных наносов и высокая надежность работы. Водоструйные насосы находят широкое применение при производстве земляных работ способом гидромеханизации. Их применяют также для откачки воды из глубоких колодцев, артезианских скважин, котлованов, траншей, для понижения уровня грунтовых вод э иглофильтровых установках. На канализационных очистных сооружениях водоструйные насосы применяют для подъема шлама, осевшего в песколовках песка и для перемешивания ила в метантенках. На крупных насосных станциях водоструйные насосы используются в качестве вспомогательных для отсасывания воздуха из основных насосов перед их запуском и для повышения всасывающей способности центробежных насосов.

    К недостаткам водоструйных насосов относятся низкий КПД и необходимость подачи большого объема рабочей воды под давлением. Поэтому применение гидроэлеватора в каждом конкретном случае должно быть обосновано экономическими расчетами.

    Воздушный подъемник. Простота устройства, легкий уход и надежность работы эрлифтов позволяют им при определенных условиях успешно конкурировать с центробежными насосами при подъеме воды из глубоких скважин, подаче химических реагентов и ила на водопроводных и канализационных очистных сооружениях. Однако необходимость "большого заглубления форсунки и малый КПД установки заставляют каждый раз обосновывать принимаемое решение технико-экономическим сравнением вариантов с использованием насосов различных типов.

    Гидравлические тараны, характеризуемые небольшими подачами, находят применение в небольших установках автономного водоснабжения с сезонным, как правило, режимом работы.

    Шнековые насосы могут оказаться весьма эффективными при перекачке сточных вод и осадка-на небольшую высоту (5-8 м).

    Данный тип классификации машин подобного рода обыкновенно используется для перекачки более вязких жидкостей. Принцип работы объемного насоса основывается на преобразовании энергии двигателя в энергию жидкости. Обыкновенно они несколько неуравновешенны и обладают высокой вибрацией, поэтому и устанавливаются на массивных фундаментах.

    Существует несколько подтипов подобных устройств:
    - импеллерные насосы, также использующиеся в качестве дозаторов;
    - пластинчатые, которые обеспечивают довольно всасывание продукта. Работают подобные насосы за счет изменений в объеме рабочей камеры в результате ротора и статора;
    - винтовые;
    - поршневые, в которых может создаваться довольно высокое давление. Такие насосы не пригодны для работы с абразивными жидкостями;
    - перистальтические насосы, обладающие свойствами химической инерции и невысоким давлением;
    - мембранные;
    - импеллерные или ламельные насосы, чаще всего используемые в пищевой промышленности.

    К общим для всех этих подтипов свойствам относятся цикличность рабочего процесса, герметичность, способность самовсасывания и независимость давления.

    Динамический тип насосов

    Подобный тип оборудования подразделяется на три категории: лопастные (функционируют за счет лопастного колеса или мелкозаходного шнека); струйные устройства (осуществляют подачу жидкости за счет энергии, получаемой от потока вспомогательной жидкости, пара или даже газа), а также насосы-тараны, которые также называют насосами-гидротаранами (принцип их действия основывается на гидравлическом ударе, который провоцирует нагнетание жидкости).

    В свою очередь, первый тип насосов – лопастных – делится еще на два различных, основанных на принципе действия, подтипа: центробежные устройства, преобразовывающие механическую энергию приводы в потенциальную энергию потока жидкости, и вихревые, представляющие собой отдельный и мало распространенный тип устройства, работающие за счет вихреобразования в рабочем канале машины.

    Более подробно подразделяется и подтип центробежных насосов. На:
    - центробежно-шнековые насосы, в которых подвод жидкости к рабочему органу происходит в виде мелкозаходного шнека с дисками большого диаметра;
    - консольные, основанные на принципе одностороннего подвода жидкости к рабочему колесу;
    - осевые (второй название - пропеллерный), в которых подача жидкости происходит за счет лопастного колеса пропеллерного типа;
    - полуосевые насосы, которые также называют диагональными и турбинными;
    - радиальные устройства с радиальными же рабочими колесами.