Межзвездный газ.

Пространство между звездами заполняют разреженный газ, пыль, магнитные поля и космические лучи.

Межзвездный газ. Его полная масса довольно велика - несколько процентов суммарной массы всех звезд нашей Галактики. Плотность газа в среднем составляет около 10 -21 кг/м 3 . При такой плотности в 1-2 см 3 межзвездного пространства содержится всего один атом газа.

Химический состав межзвездного газа примерно такой же, как и у звезд: больше всего водорода, затем идет гелий и очень немного всех остальных химических элементов.

Межзвездный газ прозрачен. Поэтому сам он не виден ни в какие телескопы, за исключением тех случаев, когда находится вблизи горячих звезд. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звезды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность (см. Туманности).

Более холодный, «невидимый» газ наблюдают радиоастрономическими методами (см. Радиоастрономия). Атомы водорода в разреженной среде излучают радиоволны на длине волны около 21 см. Поэтому из областей межзвездного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, ученые узнают о плотности, температуре и движении межзвездного газа в космическом пространстве.

Оказалось, что он распределен в пространстве неравномерно. Существуют газовые облака размером от одного до нескольких сотен световых лет и с низкой температурой - от десятков до сотен градусов Кельвина. Пространство между облаками заполнено более горячим и разреженным межоблачным газом.

Вдали от горячих звезд газ нагревается главным образом рентгеновскими и космическими лучами, непрерывно пронизывающими во всех направлениях межзвездное пространство. До больших температур его могут разогреть и сверхзвуковые волны сжатия - ударные волны, распространяющиеся с огромной скоростью в газе. Они образуются при взрывах сверхновых звезд и при столкновениях быстро движущихся масс газа.

Чем выше плотность газа или чем массивнее газовое облако, тем больше энергии требуется, чтобы его нагреть. Поэтому в плотных облаках температура межзвездного газа очень мала: встречаются облака с температурой от нескольких единиц до нескольких десятков градусов Кельвина. В таких областях водород и другие химические элементы объединяются в молекулы. При этом слабеет радиоизлучение на волне 21 см, потому что водород из атомарного (Н) становится молекулярным (Н 2). Но зато появляются линии радиоизлучения различных молекул на длинах волн от нескольких миллиметров до нескольких десятков сантиметров. Эти линии наблюдаются, и по ним можно судить о физическом состоянии газа в холодных облаках, которые часто так и называют: молекулярные облака или молекулярные газовые комплексы.

Путем радионаблюдений в линиях излучения молекул в нашей Галактике было обнаружено большое число гигантских молекулярных облаков с массой не менее 100 тыс. масс Солнца. Полное количество газа, содержащегося в них, сопоставимо с количеством атомарного водорода в Галактике. Области с наиболее высокой плотностью молекулярного газа образуют в Галактике широкое кольцо вокруг центра с радиусом 5-7 кпс.

По линиям радиоизлучения в межзвездной среде астрономам удалось обнаружить несколько десятков типов молекул: от простых двухатомных молекул СН, СО, CN до таких, как молекула муравьиной кислоты, этилового или метилового спирта, и более сложных многоатомных молекул. Но самыми распространенными молекулами все же являются молекулы водорода Н 2 .

Плотность и температура молекулярных облаков таковы, что газ в них стремится сжаться и уплотниться под действием собственной гравитации. Этот процесс, по-видимому, приводит к образованию звезд. Действительно, холодные молекулярные облака очень часто соседствуют с молодыми звездами.

Из-за превращения межзвездного газа в звезды его запасы в Галактике постепенно истощаются. Но газ частично возвращается из звезд в межзвездную среду. Это происходит при вспышках новых и сверхновых звезд, при истечении вещества с поверхности звезд и при образовании звездами планетарных туманностей.

В нашей Галактике, как и в большинстве других, газ концентрируется к плоскости звездного диска, образуя слой толщиной примерно в 100 пс. К краю Галактики толщина этого слоя постепенно увеличивается. Наибольшей плотности газ достигает в ядре Галактики и на расстоянии 5÷7 кпс от него.

На большом расстоянии от диска Галактики пространство заполнено очень горячим (более миллиона градусов) и крайне разреженным газом, но его полная масса невелика по сравнению с массой межзвездного газа вблизи плоскости Галактики.

Межзвездная пыль. В межзвездном газе в качестве небольшой примеси к нему (около 1% по массе) содержится пыль. Присутствие пыли заметно, прежде всего, по поглощению и отражению света звезд. Из-за поглощения света пылью мы почти не видим в направлении на Млечный Путь тех звезд, которые расположены дальше, чем 3-4 тыс. световых лет от нас. Ослабление света особенно сильно в синей (коротковолновой) области спектра. Поэтому далекие звезды выглядят покрасневшими. Особенно непрозрачны из-за большой плотности пыли плотные газопылевые облака - глобулы.

Отдельные пылинки имеют очень маленький размер - несколько десятитысячных долей миллиметра. Они могут состоять из углерода, кремния и различных смерзшихся газов. Зародыши или ядра пылинок, скорее всего, образуются в атмосферах холодных звезд-гигантов. Оттуда они давлением света звезды «выдуваются» в межзвездное пространство, где на них «намерзают» молекулы водорода, воды, метана, аммиака и других газов.

Межзвездное магнитное поле. Межзвездная среда пронизана слабым магнитным полем. Оно примерно в 100 000 раз слабее магнитного поля Земли. Но межзвездное поле охватывает гигантские объемы космического пространства, и поэтому его полная энергия очень велика.

Межзвездное магнитное поле практически не оказывает никакого влияния на звезды или планеты, но оно активно взаимодействует с движущимися в межзвездном пространстве заряженными частицами - космическими лучами. Действуя на быстрые электроны, магнитное поле «заставляет» их излучать радиоволны. Магнитное поле ориентирует определенным образом межзвездные пылинки, имеющие вытянутую форму, и свет далеких звезд, проходящий сквозь межзвездную пыль, приобретает новое свойство - становится поляризованным.

Очень большое влияние оказывает магнитное поле на движение межзвездного газа. Оно способно, например, затормозить вращение газовых облаков, воспрепятствовать сильному сжатию газа или таким образом направить движение газовых облаков, чтобы заставить их собраться в огромные газопылевые комплексы.

О космических лучах подробно рассказано в соответствующей статье.

Все четыре составляющие межзвездной среды тесно связаны друг с другом. Их взаимодействие сложно и еще не совсем ясно. При изучении межзвездной среды астрофизики опираются как на непосредственные наблюдения, так и на такие теоретические разделы физики, как физика плазмы, атомная физика и магнитная газодинамика.

Согласно современным представлениям, звезды образуются путем конденсации весьма разреженной межзвездной газово-пылевой среды. Поэтому, прежде чем рассказать о путях эволюции звезд, нам придется остановиться на свойствах межзвездной среды.

Межзвездный газ был обнаружен в самом начале текущего столетия благодаря поглощению в линиях ионизованного кальция, которое он производит в спектрах удаленных горячих звезд. С тех пор методы изучения межзвездного газа непрерывно улучшались и достигли высокой степени совершенства. В итоге большой многолетней работы, проделанной астрономами, сейчас свойства межзвездного газа можно считать достаточно хорошо известными. Плотность межзвездной газовой среды ничтожна. В среднем в областях межзвездного пространства, расположенных недалеко от галактической плоскости, в 1 см3 находится примерно 1 атом. Напомним, что в таком же объеме воздуха находится 2,7*1019 молекул. Даже в самых совершенных вакуумных камерах концентрация атомов не меньше чем 103 см-3. И все же межзвездную среду нельзя рассматривать как вакуум! Дело в том, что вакуумом, как известно, называется такая система, в которой длина свободного пробега атомов или молекул превышает характерные размеры этой системы. Однако в межзвездном пространстве средняя длина свободного пробега атомов в сотни раз меньше, чем расстояния между звездами. Поэтому мы вправе рассматривать межзвездный газ как сплошную, сжимаемую среду и применять к этой среде законы газовой динамики.

Химический состав межзвездного газа довольно хорошо исследован. Он сходен с химическим составом наружных слоев звезд главной последовательности. Преобладают атомы водорода и гелия, атомов металлов сравнительно немного. В довольно заметных количествах присутствуют простейшие молекулярные соединения (например, CO, CN). Возможно, что значительная часть межзвездного газа находится в форме молекулярного водорода. Развитие внеатмосферной астрономии открыло возможность наблюдения линий молекулярного водорода в далекой ультрафиолетовой части спектра.

Физические свойства межзвездного газа существенно зависят от того, находится ли он в сравнительной близости от горячих звезд или, напротив, достаточно удален от них. Дело в том, что ультрафиолетовое излучение горячих звезд полностью ионизует водород на огромных расстояниях. Так, звезда класса О5 ионизует вокруг себя водород в гигантской области радиусом около 100 пс.

Температура межзвездного газа в таких областях (определяемая как характеристика беспорядочных тепловых движений частиц) достигает 10 тыс. К. При этих условиях мезжзвездная среда излучает отдельные линии в видимой части спектра, в частности красную водородную линию. Эти области межзвездной среды носят название «зоны HII». Однако большая часть межзвездной среды достаточно удалена от горячих звезд. Водород там не ионизован. Температура газа низкая, около 100 К или ниже. Именно здесь имеется значительное количество молекул водорода.

Кроме газа, в состав межзвездной среды входит космическая пыль. Размеры таких пылинок составляют 10-4-10-5 см. Они являются причиной поглощения света в межзвездном пространстве, из-за которого мы не можем наблюдать объекты, находящиеся в галактической плоскости на расстояниях, больших 2–3 тыс. пс. К счастью, космическая пыль, так же как и связанный с ней межзвездный газ, сильно концентрируется к галактической плоскости. Толщина газово-пылевого слоя составляет всего лишь около 250 пс. Поэтому излучение от космических объектов, направления на которые составляют значительные углы с галактической плоскостью, поглощается незначительно.

Межзвездные газ и пыль перемешаны. Отношение средних плотностей газа и пыли в межзвездном пространстве равно приблизительно 100:1. Наблюдения показывают, что пространственная плотность газово-пылевой межзвездной среды меняется весьма нерегулярно. Для этой среды характерно резко выраженное «клочковатое» распределение. Она существует в виде облаков (в которых плотность раз в 10 больше средней), разделенных областями, где плотность ничтожно мала. Эти газово-пылевые облака сосредоточены преимущественно в спиральных ветвях Галактики и участвуют в галактическом вращении. Отдельные облака имеют скорости в 6–8 км/с, о чем уже говорилось. Наиболее плотные из таких облаков наблюдаются как темные или светлые туманности.

Значительное количество сведений о природе межзвездного газа было получено за последние два десятилетия благодаря весьма эффективному применению радиоастрономических методов. Особенно плодотворными оыли исследования межзвездного газа на волне 21 см. Что это за волна? Еще в сороковых годах теоретически было предсказано, что нейтральные атомы водорода в условиях межзвездного пространства должны излучать спектральную линию с длиной волны 21 см. Дело в том, что основное, самое «глубокое» квантовое состояние атома водорода состоит из двух очень близких уровней. Эти уровни различаются ориентациями магнитных моментов ядра атома водорода (протона) и вращающегося вокруг него электрона. Если моменты ориентированы параллельно, получается один уровень, если антипараллельно – другой. Энергия одного из этих уровней несколько больше другого (на величину, равную удвоенному значению энергии взаимодействия магнитных моментов электрона и протона). Согласно законам квантовой физики, время от времени должны самопроизвольно происходить переходы с уровня большей энергии на уровень меньшей энергии. При этом будет излучаться квант с частотой, пропорциональной разности энергий уровней. Так как последняя в нашем случае очень мала, то и частота излучения будет низкой. Соответствующая длина волны будет равна 21 см.

Расчеты показывают, что такие переходы между уровнями атома водорода происходят чрезвычайно редко: в среднем для одного атома имеет место один переход в 11 млн. лет! Чтобы почувствовать ничтожную величину вероятности таких процессов, достаточно сказать, что при излучении спектральных линий в оптическом диапазоне переходы происходят каждую стомиллионную долю секунды. И все же оказывается, что эта линия, излучаемая межзвездными атомами, имеет вполне наблюдаемую интенсивность.

Так как межзвездные атомы имеют различные скорости по лучу зрения, то из-за эффекта Доплера излучение в линии 21 см будет «размазано» в некоторой полосе частот около 1420 Мгц (эта частота соответствует длине волны 21 см). По распределению интенсивности в этой полосе (так называемому «профилю линии») можно изучить все движения, в которых участвуют межзвездные атомы водорода. Таким путем удалось исследовать особенности галактического вращения межзвездного газа, беспорядочные движения отдельных его облаков, а также его температуру. Кроме того, из этих наблюдений определяется количество атомов водорода в межзвездном пространстве. Мы видим, таким образом, что радиоастрономические исследования на волне 21 см являются мощнейшим методом излучения межзвездной среды и динамики Галактики. В последние годы этим методом изучаются другие галактики, например туманность Андромеды. По мере увеличения размеров радиотелескопов будут открываться все новые возможности изучения более удаленных галактик при помощи радиолинии водорода.

В конце 1963 г. была обнаружена еще одна межзвездная радиолиния, принадлежащая молекулам гидроксила ОН, с длиной волны 18 см (линия ОН состоит из четырех близких по частотам компонент – 1612, 1665, 1667 и 1720МГц)). Существование этой линии было теоретически предсказано известным советским астрофизиком И.С.Шкловским в 1949 г. В направлении на галактический центр интенсивность этой линии (которая наблюдается в поглощении) оказалась очень высокой. Это подтверждает сделанный выше вывод, что в отдельных областях межзвездного пространства газ находится преимущественно в молекулярном состоянии. В 1967 г. была открыта радиолиния воды Н2О с длиной волны 1,35 см.

За последние 15 лет, протекшие после открытия межзвездной радиолинии ОН, было открыто много других радиолиний межзвездного происхождения, принадлежащих различным молекулам. Среди них особенно большое значение имеет молекула СО, радиолиния которой с длиной волны 2,64 мм наблюдается почти во всех областях межзвездной среды. Есть молекулы, радиолинии от которых наблюдаются исключительно в плотных, холодных облаках межзвездной среды. Довольно неожиданным было обнаружение в таких облаках радиолиний весьма сложных многоатомных молекул, например, СН3НСО, CH3CN и др.

Весьма полезным является то обстоятельство, что соответствующие радиолинии, принадлежащие различным изотопам одной и той же молекулы, имеют довольно заметно различающиеся длины волн. Это позволяет исследовать изотопный состав межзвездной среды, что имеет большое значение для проблемы эволюции вещества во Вселенной. В частности, раздельно наблюдаются такие изотопные комбинации окиси углерода: 12C16 О, 13С16О и 12С18О. Области межзвездной среды, окружающей горячие звезды, где водород полностью ионизован («зоны HII»), весьма успешно исследуются при помощи так называемых «рекомбинационных» радиолиний, существование которых было теоретически предсказано еще до их открытия советским астрономом Н.С.Кардашевым. «Рекомбинационные» линии возникают при переходах между весьма высоко возбужденными атомами (например, между 108 и 107 уровнями атома водорода). Столь «высокие» уровни могут существовать в межзвездной среде только по причине ее чрезвычайно низкой плотности. Заметим, например, что в солнечной атмосфере могут существовать только первые 28 уровней атома водорода; более высокие уровни разрушаются благодаря взаимодействию с частицами окружающей плазмы.

Уже сравнительно давно астрономы получили ряд косвенных доказательств наличия межзвездных магнитных полей. Эти магнитные поля связаны с облаками межзвездного газа и движутся вместе с ними. Напряженность таких полей около 10-5Э, т.е. в 100 тыс. раз меньше напряженности земного магнитного поля на поверхности нашей планеты. Общее направление магнитных силовых линий совпадает с направлением ветвей спиральной структуры Галактики. Можно сказать, что сами спиральные ветви представляют собой гигантских размеров магнитные силовые трубки.

В конце 1962 г. факт существования межзвездных магнитных полей был установлен английскими радиоастрономами путем прямых наблюдений. С этой целью исследовались весьма тонкие поляризационные эффекты в радиолинии 21 см, наблюдаемой в поглощении в спектре мощного источника радиоизлучения – Крабовидной туманности. Если межзвездный газ находится в магнитном поле, можно ожидать расщепления линии 21 см на несколько компонент, отличающихся поляризацией. Так как величина магнитного поля очень мала, это расщепление будет совершенно ничтожным. Кроме того, ширина линии поглощения 21 см довольно значительна. Единственное, что можно ожидать в такой ситуации, – это небольшие систематические различия поляризации в пределах профиля линий поглощения. Поэтому уверенное обнаружение этого тонкого эффекта – замечательное достижение современной науки. Измеренное значение межзвездного магнитного поля оказалось в полном соответствии с теоретически ожидаемым согласно косвенным данным.

Для исследований межзвездных магнитных полей применяется и радиоастрономический метод, основанный на изучении вращения плоскости поляризации радиоизлучения внегалактических источников при его прохождении через «намагниченную» межзвездную среду («явление Фарадея»). Этим методом уже сейчас удалось получить ряд важных данных о структуре межзвездных магнитных полей. В последние годы в качестве источников поляризованного излучения для измерения межзвездного магнитного поля таким методом используются пульсары.

Межзвездные магнитные поля играют решающую роль при образовании плотных холодных газово-пылевых облаков межзвездной среды, из которых конденсируются звезды.

С межзвездными магнитными полями тесно связаны первичные космические лучи, заполняющие межзвездное пространство. Это частицы (протоны, ядра более тяжелых элементов, а также электроны), энергии которых превышают сотни миллионов электронвольт, доходя до 1020–1021 эВ. Они движутся вдоль силовых линий магнитных полей по винтовым траекториям. Электроны первичных космическнх лучей, двигаясь в межзвездных магнитных полях, излучают радиоволны. Это излучение наблюдается нами как радиоизлучение Галактики (так называемое «синхротронное излучение»). Таким образом, радиоастрономия открыла возможность изучать космические лучи в глубинах Галактики и даже далеко за ее пределами. Она впервые поставила проблему происхождения космических лучей на прочный научный фундамент.

Масса межзвездного газа в нашей Галактике близка к миллиарду солнечных масс, что составляет немногим больше 1% от полной массы Галактики, обусловленной в основном звездами. В других звездных системах относительное содержание межзвездного газа меняется в довольно широких пределах. У эллиптических галактик оно очень мало, около 10-4% и даже меньше, в то время как у неправильных звездных систем (типа Магеллановых Облаков) содержание межзвездного газа доходит до 20 и даже 50%. Это обстоятельство тесно связано с вопросом об эволюции звездных систем.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ЛИЦЕЙ №11 ГОРОДА ЧЕЛЯБИНСКА

Реферат

н а тему :

«Газопылевые комплексы . Межзвездная среда »

Выполнила:

Ученица 11э класса

Киселёва Полина Олеговна

Проверила:

Лыкасова Алевтина Павловна

Челябинск 2015

О ГЛАВЛЕНИЕ

Введение

1. История исследований МЗС

2. Основные составляющие МЗС

2.1 Межзвёздный газ

2.2 Межзвёздная пыль

2.3 Межзвёздное облако

2.4 Космические лучи

2.5 Межзвёздное магнитное поле

3. Физические особенности МЗС

4. Туманности

4.1 Диффузная (светлая) туманность

4.2 Тёмная туманность

5. Излучение

6. Эволюция межзвёздной среды

Заключение

Список источников

ВВЕДЕНИЕ

Вселенная, по своей сути, почти пустое пространство. Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Звёзды занимают лишь малую часть огромной Вселенной. Вещество и поля, заполняющие межзвездное пространство внутри галактик, называют межзвёздной средой (МЗС). Природа межзвёздной среды столетиями привлекала внимание астрономов и учёных. Термин «межзвёздная среда» впервые был использован Ф.Бэконом в 1626г.

1. ИСТОРИЯ ИССЛЕДОВАНИЙ МЗС

Еще в середине 19 в. российский астроном В.Струве пытался научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд, но безуспешно. межзвёздный среда облако газ

Позже немецкий астрофизик Ф.Гартман проводил исследование спектра Дельты Ориона и изучал движение по орбите компаньонов системы Дельты Ориона и свет, приходящий от звезды. Поняв, что некоторая часть света поглощается на пути к Земле, Гартман писал, что «линия поглощения кальция очень слаба», а также, что «некоторым сюрпризом оказалось то, что линии кальция на длине волны 393,4 нанометров не движутся в периодическом расхождении линий спектра, которое присутствует в спектроскопически-двойных звёздах». Стационарная природа этих линий позволила Гартману предположить, что газ, ответственный за поглощение, не присутствует в атмосфере Дельты Ориона, но, напротив, находится вне звезды и расположен между звездой и наблюдателем. Это исследование и стало началом изучения межзвездной среды.

Интенсивные исследования межзвёздной материи позволили У. Пикерингу в 1912 году заявить, что «межзвёздная поглощающая среда, которая как показал Каптейн , поглощает только на некоторых волнах, может свидетельствовать о наличии газа и газообразных молекул, которые исторгаются Солнцем и звёздами».

В том же 1912-м году В. Гесс открыл космические лучи, энергичные заряженные частицы, которые бомбардируют Землю из космоса. Это позволило заявить некоторым исследователям, что они также наполняют собой межзвёздную среду.

После исследований Гартмана, в 1919 году, Эгер во время изучения линий поглощения на волнах 589,0 и 589,6 нанометров в системах Дельты Ориона и Беты Скорпиона обнаружил в межзвёздной среде натрий.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896-1956) и советским астрономом Б.А. Воронцовым-Вельяминовым (1904-1994). Вернее, так была обнаружена одна из составляющих межзвездной среды - мелкая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь. Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды - ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским . Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды - очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно - среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления - космическая газодинамика и космическая электродинамика , изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды - нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав.

2. ОСНОВНЫЕ СОСТАВЛЯЮЩИЕ МЗС

Межзвёздная среда включает в себя межзвёздный газ, пыль (1 % от массы газа), межзвёздные магнитные поля, межзвёздное облако, космические лучи, а также тёмную материю. Химический состав межзвёздной среды -- продукт первичного нуклеосинтеза и ядерного синтеза в звёздах.

2 .1 Межзвёздный газ

Межзвёздный газ - это разрежнная газовая среда, заполняющая всё пространство между звёздами. Межзвёздный газ прозрачен. Полная масса межзвёздного газа в Галактике превышает 10 миллиардов масс Солнца или несколько процентов суммарной массы всех звёзд нашей Галактики. Средняя концентрация атомов межзвёздного газа составляет менее 1 атома в смі. Плотность газа в среднем составляет около 10?21 кг/мі. Химический состав примерно такой же, как и у большинства звёзд: он состоит из водорода и гелия с небольшой примесью более тяжёлых элементов. В зависимости от температуры и плотности межзвёздный газ пребывает в молекулярном, атомарном или ионизованном состояниях. Ультрафиолетовые лучи, в отличие от лучей видимого света, поглощаются газом и отдают ему свою энергию. Благодаря этому горячие звёзды своим ультрафиолетовым излучением нагревают окружающий газ до температуры примерно 10 000 К. Нагретый газ начинает сам излучать свет, и мы наблюдаем его как светлую газовую туманность. Более холодный, «невидимый» газ наблюдают радиоастрономическими методами. Атомы водорода в разрежённой среде излучают радиоволны на длине волны около 21 см. Поэтому от областей межзвёздного газа непрерывно распространяются потоки радиоволн. Принимая и анализируя это излучение, учёные узнают о плотности, температуре и движении межзвёздного газа в космическом пространстве.

2 .2 Межзвёздная пыль

Межзвёздная пыль -- твёрдые микроскопические частицы, наряду с межзвёздным газом заполняющие пространство между звёзд. В настоящее время считается что пылинки имеют тугоплавкое ядро, окруженное органическим веществом или ледяной оболочкой. Химический состав ядра определяется тем, в атмосфере каких звёзд они сконденсировались. Например в случае углеродных звёзд, они будут состоять из графита и карбида кремния.

Типичный размер частиц межзвездной пыли от 0,01 до 0,2 мкм, полная масса пыли составляет порядка 1 % от полной массы газа. Свет звёзд нагревает межзвёздную пыль до нескольких десятков K, благодаря чему межзвёздная пыль является источником длинноволнового инфракрасного излучения.

Пыль также влияет на химические процессы, проходящие в межзвездной среде: пылевые гранулы содержат тяжелые элементы, которые используются как катализатор в различных химических процессах. Гранулы пыли участвуют и в образовании молекул водорода, что увеличивает темп звездообразования в металло-бедных облаках

2 .3 Межзвёздное облако

Межзвёздное облако -- общее название для скоплений газа, плазмы и пыли в нашей и других галактиках. Иными словами, межзвёздное облако имеет более высокую плотность, чем средняя плотность межзвёздной среды. В зависимости от плотности, размера и температуры данного облака, водород в нем может быть нейтральным, ионизированным (то есть в виде плазмы) или молекулярным. Нейтральные и ионизованные облака иногда называют диффузными облаками, в то время как молекулярные облака называют плотными облаками.

Анализ состава межзвёздных облаков осуществляется путём изучения их электромагнитного излучения с помощью больших радиотелескопов. Исследуя спектр излучения межзвёздного облака и сопоставляя его со спектром конкретных химических элементов, можно определить химический состав облака.

Обычно около 70 % массы межзвёздного облака составляет водород, оставшаяся часть приходится в основном на гелий. В облаках также присутствуют следы тяжёлых элементов: металлов, таких как кальций, нейтральный или в форме катионов Ca+ (90 %) и Ca++ (9 %), и неорганические соединения, такие как вода, оксид углерода, сероводород, аммиак и цианистый водород.

2 .4 Космические лучи

Космимческие лучим -- элементарные частицы и ядра атомов, движущиеся с высокими энергиями в космическом пространстве. Их основным (но не единственным) источником служат взрывы сверхновых звезд.

Первичными принято называть внегалактические и галактические лучи. Вторичными принято называть потоки частиц, проходящие и трансформирующиеся в атмосфере Земли.

Космические лучи являются составляющей естественной радиации (фоновой радиации) на поверхности Земли и в атмосфере.

Химический спектр космических лучей в пересчете энергии на нуклон более чем на 94 % состоит из протонов, ещё на 4 % -- из ядер гелия (альфа-частиц). Есть также ядра других элементов, но их доля значительно меньше.

По количеству частиц космические лучи на 90 процентов состоят из протонов, на 7 процентов -- из ядер гелия, около 1 процента составляют более тяжелые элементы, и около 1 процента приходится на электроны.

2 .5 Межзвёздное магнитное поле

Частицы движутся в слабом магнитном поле межзвездного пространства, индукция которого примерно в сто тысяч раз меньше, чем у магнитного поля Земли. Межзвездное магнитное поле, действуя на заряженные частицы с силой, зависящей от их энергии, «запутывает» траектории частиц, и они непрерывно меняют направление своего движения в Галактике. Заряженные частицы, летящие в межзвездном магнитном поле, отклоняются от прямых траекторий под действием силы Лоренца. Их траектории словно «наматываются» на линии магнитной индукции.

3. ФИЗИЧЕСКИЕ ОСОБЕННОСТИ МЗС

· Отсутствие локального термодинамического равновесия (ЛТР) - с остояния системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды.

· Тепловая неустойчивость

Условие теплового равновесия может вовсе не выполняться. Существует магнитное поле, которое препятствует сжатию, если только оно не происходит вдоль линий поля. Во-вторых, межзвёздная среда находится в непрерывном движении и её локальные свойства непрерывно меняются, в ней появляются новые источники энергии и исчезают старые. В-третьих, кроме термодинамической неустойчивости существуют гравитационная и магнитогидродинамическая. И это без учёта всякого рода катаклизмов в виде вспышек сверхновых, приливных влияний, проходящих по соседству галактик, или прохождения самого газа через спиральные ветви Галактики.

· Запрещенные линии и линия 21 см

Отличительной особенностью оптически тонкой среды является излучение в запрещённых линиях . Запрещёнными называют линии, которые запрещены правилами отбора, то есть происходят с метастабильных уровней (квазиустойчивого равновесия). Характерное время жизни электрона на этом уровне -- от с до нескольких суток. При высоких концентрациях частиц их столкновение снимает возбуждение и линии не наблюдаются из-за крайней слабости. При и малых плотностях интенсивность линии не зависит от вероятности перехода, поскольку малая вероятность компенсируется большим числом атомов находящихся в метастабильном состоянии. Если ЛТР нет, то заселённость энергетических уровней следует рассчитывать из баланса элементарных процессов возбуждения и деактивации.

Важнейшей запрещённой линией МЗС является радиолиния атомарного водорода 21 см . Эта линия возникает при переходе между подуровнями сверхтонкой структуры уровня водорода, связанными с наличием спина у электрона и протона. Вероятность этого перехода (То есть 1 раз в 11 млн лет).

Исследования радиолинии 21 см позволили установить, что нейтральный водород в галактике в основном заключён в очень тонком, 400 пк толщиной, слое около плоскости Галактики.

· Вмороженность магнитного поля.

Вмороженность магнитного поля означает сохранение магнитного потока через любой замкнутый проводящий контур при его деформации. В лабораторных условиях магнитный поток можно считать сохраняющимся в средах с высокой электропроводностью. В пределе бесконечной электропроводности бесконечное малое электрическое поле вызвало бы рост тока до бесконечной величины. Следовательно идеальный проводник не должен пересекать магнитные силовые линии, и таким образом возбуждать электрическое поле, а напротив должен увлекать за собой линии магнитного поля, магнитное поле оказывается как бы вмороженным в проводник.

Реальная космическая плазма, далеко не идеальна и вмороженность стоит понимать в том смысле, что требуется очень большое время для изменения потока через контур. На практике это означает, что мы можем считать поле постоянным пока облако сжимается, обращается и т. д.

4. ТУМАННОСТИ

Туманность -- участок межзвёздной среды, выделяющийся своим излучением или поглощением излучения на общем фоне неба. Туманности состоят из пыли, газа и плазмы.

Первичный признак, используемый при классификации туманностей -- поглощение, или же излучение либо рассеивание ими света, то есть по этому критерию туманности делятся на тёмные и светлые.

Деление туманностей на газовые и пылевые в значительной степени условно: все туманности содержат и пыль, и газ. Такое деление исторически обусловлено различными способами наблюдения и механизмами излучения: наличие пыли наиболее ярко наблюдается при поглощении тёмными туманностями излучения расположенных за ними источников и при отражении или рассеивании, или переизлучении, содержащейся в туманности пылью излучения расположенных поблизости или в самой туманности звёзд; собственное излучение газовой компоненты туманности наблюдается при её ионизации ультрафиолетовым излучением расположенной в туманности горячей звезды (эмиссионные области H II ионизированного водорода вокруг звёздных ассоциаций или планетарные туманности) или при нагреве межзвёздной среды ударной волной вследствие взрыва сверхновой или воздействия мощного звёздного ветра звёзд типа Вольфа -- Райе.

4 .1 Диффузная (светлая) туманность

Диффузная (светлая) туманность -- в астрономии, общий термин, используемый для обозначения излучающих свет туманностей. Три типа диффузных туманностей -- это отражательная туманность, эмиссионная туманность (разновидностью которой являются протопланетарная, планетарная и область H II) и остаток сверхновой.

· Отражательная туманность

Отражательные туманности являются газово-пылевыми облаками, подсвечиваемыми звёздами. Если звезда (звёзды) находится в межзвёздном облаке или рядом с ним, но недостаточно горяча (горячи), чтобы ионизовать вокруг себя значительное количество межзвёздного водорода, то основным источником оптического излучения туманности оказывается свет звёзд, рассеиваемый межзвёздной пылью.

Спектр отражательной туманности такой же, как и у подсвечивающей ее звезды. Среди микроскопических частиц, ответственных за рассеивание света, можно выделить частички углерода (иногда их называют бриллиантовой пылью), а также частицы железа и никеля. Последние две взаимодействуют с галактическим магнитным полем, и поэтому отражённый свет слегка поляризован.

Отражательные туманности обычно имеют синий оттенок, поскольку рассеяние голубого цвета более эффективно, чем красного (именно этим, в частности, объясняется голубой цвет неба).

В настоящее время известно порядка 500 отражательных туманностей, самая известная из которых -- вокруг Плеяд (звёздное скопление). Гигантская красная (спектральный класс M1) звезда Антарес окружена большой красной отражательной туманностью. Отражательные туманности также часто встречаются в местах звёздообразования.

В 1922 году Хаббл опубликовал результаты исследований некоторых ярких туманностей. В этой работе Хаббл вывел закон светимости для отражательной туманности, который устанавливает соотношение между угловым размером туманности (R ) и видимой величиной подсвечивающей звезды (m ):

где -- константа, зависящая от чувствительности измерения.

· Эмиссионная туманность

Эмиссионная туманность -- облако ионизированного газа (плазмы), излучающее в видимом цветовом диапазоне спектра. Ионизация происходит за счёт высокоэнергетических фотонов, излучаемых ближайшей горячей звездой. Различают несколько видов эмиссионных туманностей. Среди них -- области H II, в которых происходит формирование новых звёзд, и источниками ионизирующих фотонов являются молодые, массивные звезды, а также планетарные туманности , в которых умирающая звезда отбросила свои верхние слои, и обнажившееся горячее ядро их ионизирует.

Планета м рная тума м нность -- астрономический объект, состоящий из ионизированной газовой оболочки и центральной звезды, белого карлика. Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой 2,5--8 солнечных на завершающей стадии их эволюции. Планетарная туманность -- быстропротекающее (по астрономическим меркам) явление, длящееся всего несколько десятков тысяч лет, при продолжительности жизни звезды-предка в несколько миллиардов лет. В настоящее время в нашей галактике известно около 1500 планетарных туманностей.

Процесс образования планетарных туманностей, наряду со вспышками сверхновых, играет важную роль в химической эволюции галактик, выбрасывая в межзвёздное пространство материал, обогащённый тяжёлыми элементами -- продуктами звёздного нуклеосинтеза (в астрономии тяжёлыми считаются все элементы, за исключением продуктов первичного нуклеосинтеза Большого взрыва -- водорода и гелия, такие как углерод, азот, кислород и кальций).

В последние годы при помощи снимков, полученных космическим телескопом «Хаббл», удалось выяснить, что многие планетарные туманности имеют очень сложную и своеобразную структуру. Несмотря на то, что приблизительно пятая часть из них имеет околосферическую форму, большинство не обладает какой бы то ни было сферической симметрией. Механизмы, благодаря которым возможно образование такого многообразия форм, остаются на сегодняшний день до конца не выясненными. Считается, что большую роль в этом могут играть взаимодействие звёздного ветра и двойных звёзд, магнитного поля и межзвёздной среды.

Планетарные туманности в большинстве своём представляют собой тусклые объекты и, как правило, не видны невооружённым глазом. Первой открытой планетарной туманностью была туманность Гантель в созвездии Лисички.

Необычность природы планетарных туманностей обнаружилась в середине XIX века, с началом использования в наблюдениях метода спектроскопии. Уильям Хаггинс стал первым астрономом, получившим спектры планетарных туманностей -- объектов, выделявшихся своей необычностью. При изучении Хаггинсом спектров туманностей NGC 6543 (Кошачий Глаз) , M27 (Гантель), M 57 (кольцевая туманность в Лире) и ряда других, оказалось, что их спектр чрезвычайно отличается от спектров звёзд: все полученные к тому времени спектры звёзд являлись спектрами поглощения (непрерывный спектр с большим количеством тёмных линий), в то время как спектры планетарных туманностей оказались эмиссионными спектрами с небольшим количеством эмиссионных линий, что указывало на их природу, в корне отличающуюся от природы звёзд.

Планетарные туманности представляют собой заключительный этап эволюции для многих звёзд. Типичная планетарная туманность имеет среднюю протяжённость в один световой год и состоит из сильно разреженного газа плотностью около 1000 частиц на смі, что пренебрежимо мало в сравнении, например, с плотностью атмосферы Земли, но примерно в 10--100 раз больше, чем плотность межпланетного пространства на расстоянии орбиты Земли от Солнца. Молодые планетарные туманности имеют наибольшую плотность, иногда достигающую 10 6 частиц на смі. По мере старения туманностей их расширение приводит к уменьшению плотности. Большинство планетарных туманностей симметричны и имеют почти сферический вид, что не мешает им иметь множество очень сложных форм. Приблизительно 10 % планетарных туманностей практически биполярны, и лишь малое их число асимметричны. Известна даже прямоугольная планетарная туманность.

Протопланетарная туманность - это астрономический объект, который недолго существует между тем, как среднемассивная звезда (1-8 солнечных масс) покинула асимптотическую ветвь гигантов (АВГ) и последующей фазой планетарной туманности (ПТ). Протопланетарная туманность светит в основном в инфракрасном диапазоне и является подтипом отражательных туманностей.

Область H II - это облако горячего газа и плазмы, достигающее нескольких сотен световых лет в поперечнике, являющееся областью активного звездообразования. В этой области рождаются молодые горячие голубовато-белые звёзды, которые обильно излучают ультрафиолетовый свет, тем самым ионизируя окружающую туманность.

Области H II могут рождать тысячи звёзд за период всего в несколько миллионов лет. В конце концов, взрывы сверхновых и мощный звёздный ветер, исходящий от наиболее массивных звёзд в образовавшемся звёздном скоплении, рассеивают газы этой области, и она превращается в группу наподобие Плеяд.

Эти области получили своё название из-за большого количества ионизированного атомарного водорода, обозначаемого астрономами как H II (область H I -- зона нейтрального водорода, а H 2 обозначает молекулярный водород). Их можно заметить на значительных расстояниях по всей Вселенной, и изучение таких областей, находящихся в других галактиках, важно для определения расстояния до последних, а также их химического состава.

Примерами являются туманность Киля , туманность Тарантул, NGC 604 , Трапеция Ориона , Петля Барнарда .

· Остаток сверхновой

Остаток сверхновой (англ. S uper N ova R emnant , SNR ) -- газопылевое образование, результат произошедшего много десятков или сотен лет назад катастрофического взрыва звезды и превращения её в сверхновую. Во время взрыва оболочка сверхновой разлетается во все стороны, образуя расширяющуюся с огромной скоростью ударную волну, которая и формирует остаток сверхновой . Остаток состоит из выброшенного взрывом звёздного материала и поглощаемого ударной волной межзвёздного вещества.

Вероятно самый красивый и лучше всего исследованный молодой остаток образован сверхновой SN 1987 A в Большом Магеллановом Облаке, вспыхнувшей в 1987 г. Другие хорошо известные остатки сверхновых, это Крабовидная туманность , остаток относительно недавнего взрыва (1054 год), остаток сверхновой Тихо (SN 1572) , получившей имя в честь Тихо Браге, который наблюдал и зафиксировал её первоначальную яркость сразу после вспышки в 1572 г., а также остаток сверхновой Кеплера (SN 1604) , названной в честь Иоганна Кеплера.

4 .2 Тёмная туманность

Тёмная тумамнность -- тип межзвёздного облака, настолько плотного, что оно поглощает видимый свет, исходящий от эмиссионных или отражательных туманностей (как, например, туманность Конская Голова ) или звёзд (например, туманность Угольный Мешок ), находящихся позади неё.

Поглощают свет частицы межзвёздной пыли, находящиеся в наиболее холодных и плотных частях молекулярных облаков. Скопления и большие комплексы тёмных туманностей связаны с гигантскими молекулярными облаками (ГМО). Изолированные тёмные туманности чаще всего бывают глобулами Бока.

Такие облака обладают очень неправильной формой: у них нет чётко очерченных границ, иногда они приобретают закрученные змеевидные образы. Самые большие тёмные туманности видны невооружённым глазом, они выступают как куски черноты на фоне яркого Млечного Пути.

Во внутренних частях тёмных туманностей часто протекают активные процессы: например, рождение звёзд или мазерное излучение.

5. ИЗЛУЧЕНИЕ

Звёздный ветер -- процесс истечения вещества из звёзд в межзвёздное пространство.

Вещество, из которого состоят звёзды, при определённых условиях может преодолевать их притяжение и выбрасываться в межзвёздное пространство. Это происходит в том случае, если частица в атмосфере звезды разгоняется до скорости, превышающей вторую космическую скорость для данной звезды. Фактически, скорости частиц, из которых состоит звёздный ветер, составляют сотни километров в секунду.

Звёздный ветер может содержать как заряженные частицы, так и нейтральные.

Звёздный ветер -- постоянно происходящий процесс, который приводит к снижению массы звезды. Количественно этот процесс может быть охарактеризован как количество (масса) вещества, которое теряет звезда в единицу времени.

Звёздный ветер может играть важную роль в звёздной эволюции: так как в результате этого процесса происходит уменьшение массы звезды, то от его интенсивности зависит срок жизни звезды.

Звёздный ветер является способом переноса вещества на значительные расстояния в космосе. Помимо того, что он сам по себе состоит из вещества, истекающего из звёзд, он может воздействовать на окружающее межзвёздное вещество, передавая ему часть своей кинетической энергии. Так, форма эмиссионной туманности NGC 7635 «Пузырь» образовалась в результате такого воздействия.

В случае истечения вещества от нескольких близко расположенных звёзд, дополненного воздействием излучения этих звёзд возможна конденсация межзвёздного вещества с последующим звездообразованием.

При активном звёздном ветре количество выбрасываемого вещества может оказаться достаточным для формирования планетарной туманности.

6. ЭВОЛЮЦИЯ МЕЖЗВЁЗДНОЙ СРЕДЫ

Эволюция межзвёздной среды, а если быть точнее межзвёздного газа, тесно связана с химической эволюцией всей Галактики. Казалось бы, все просто: звезды поглощают газ, а после выбрасывают его обратно, обогащая его продуктами ядерного горения -- тяжёлыми элементами, -- таким образом металличность должна постепенно возрастать.

Теория Большого взрыва предсказывает, что в ходе первичного нуклеосинтеза образовались водород, гелий, дейтерий, литий и другие лёгкие ядра, которые раскалываются ещё на треке Хаяши или стадии протозвёзды. Иными словами, мы должны наблюдать долгоживущие G-карлики с нулевой металличностью. Но таковых в Галактике не найдено, более того, большинство из них имеют почти солнечную металличность. По косвенным данным, можно судить, что что-то подобное и в других галактиках. На данный момент вопрос остаётся открытым и ждёт своего решения.

В первичном межзвёздном газе не было и пыли. Как сейчас считается, пылинки образуются на поверхности старых холодных звёзд и покидают её вместе с истекающим веществом.

ЗАКЛЮЧЕНИЕ

Изучение такой сложной системы как «звезды - межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

СПИСОК ИСТОЧНИКОВ

1) Материалы, взятые с сайта www.wikipedia.org

2) Материалы, взятые с сайта www.krugosvet.ru

3) Материалы, взятые с сайта www.bse.sci-lib.com

4) Материалы, взятые с сайта www.dic.academic.ru

Размещено на Allbest.ru

Подобные документы

    Туманность как участок межзвездной среды, выделяющейся своим излучением или поглощением излучения на общем фоне неба, ее разновидности и формы: эмиссионная, остатки сверхновых. История возникновения и развития некоторых туманностей: Орел, Песочные часы.

    презентация , добавлен 11.10.2012

    Пыль, газ и плазма как основные составляющие туманности. Классификация туманностей, характеристика их основных видов. Особенности строения диффузных, отражательных, эмиссионных, темных и планетарных туманностей. Формирование остатка сверхновой звезды.

    презентация , добавлен 20.12.2015

    Описание явлений туманности и солнечной активности. Изучение галактических, солнечных и космических лучей, способы их регистрации. Свойства межзвездного магнитного поля. Особенности пространственного распределения галактик. Идеи о расширении Вселенной.

    краткое изложение , добавлен 06.01.2012

    Звездное ядро как центральная, компактная область Галактики. Основные элементы структуры Галактики. Рассеянный и шаровой тип скоплений. Характеристика межзвездного газа. Общее понятие про светлые газовые туманности. Планетарные, темные туманности.

    презентация , добавлен 28.09.2011

    Космогония как наука, изучающая происхождение и развитие небесных тел. Сущность гипотезы Джинса. Туманность, рождение Солнца. Основные этапы процесса превращения частиц туманности в планеты: слипание частиц; разогревание; вулканическая деятельность.

    реферат , добавлен 20.06.2011

    Космические аппараты исследования природных ресурсов Земли и контроля окружающей среды серии Ресурс-Ф. Основные технические характеристики КА Ресурс-Ф1 и фотоаппаратуры. Космические аппараты космической медицины и биологии КА Бион, материаловедения Фотон.

    реферат , добавлен 06.08.2010

    Звёздная эволюция - изменения звезды в течение её жизни. Термоядерный синтез и рождение звезд; планетарная туманность, протозвезды. Характеристика молодых звезд, их зрелость, поздние годы, гибель. Нейтронные звезды (пульсары), белые карлики, черные дыры.

    презентация , добавлен 10.05.2012

    Стадии формирования Солнечной системы. Состав среды протопланетного диска Солнца, исследование его эволюции с помощью численной двумерной газодинамической модели, которая соответствует осесимметричному движению газовой среды в гравитационном поле.

    курсовая работа , добавлен 29.05.2012

    Характеристика звезд. Звезды в космическом пространстве. Звезда – плазменный шар. Динамика звездных процессов. Солнечная система. Межзвездная среда. Понятие звездной эволюции. Процесс звездообразования. Звезда как динамическая саморегулирующаяся система.

    реферат , добавлен 17.10.2008

    Восьмая планета от Солнца. Некоторые параметры планеты Нептун. Химический состав, физические условия, строение, атмосфера. Температура поверхностных областей. Спутники Нептуна, их размеры, характеристики, история открытий. Кольца Нептуна, магнитное поле.

–это вещество, наблюдаемое в пространстве между звездами.

Лишь сравнительно недавно удалось доказать, что звезды существуют не в абсолютной пустоте и что космическое пространство не вполне прозрачно. Тем не менее такие предположения высказывались давно. Еще в середине 19 в. российский астроном В.Струве пытался (правда, без особого успеха) научными методами найти непреложные свидетельства того, что пространство не пустое, и в нем происходит поглощение света далеких звезд.

Наличие поглощающей разреженной среды было убедительно показано менее ста лет назад, в первой половине 20 в., путем сравнения наблюдаемых свойств далеких звездных скоплений на различных расстояниях от нас. Это было сделано независимо американским астрономом Робертом Трюмплером (1896–1956) и советским астрономом Б.А.Воронцовым-Вельяминовым (1904–1994), вернее, так была обнаружена одна из составляющих межзвездной среды – мелкая пыль, из-за которой межзвездная среда оказывается не вполне прозрачной, особенно в направлениях, близких к направлению на Млечный Путь. Присутствие пыли означало, что и видимая яркость, и наблюдаемый цвет далеких звезд искажены, и чтобы узнать их истинные значения, нужен довольно сложный учет поглощения. Пыль, таким образом, была воспринята астрономами как досадная помеха, мешающая исследованию далеких объектов. Но одновременно возник интерес и к изучению пыли как физической среды – ученые стали выяснять, как пылинки возникают и разрушаются, как реагирует пыль на излучение, какую роль играет пыль в образовании звезд.

С развитием радиоастрономии во второй половине 20 в. появилась возможность исследовать межзвездную среду по ее радиоизлучению. В результате целенаправленных поисков было обнаружено излучение атомов нейтрального водорода в межзвездном пространстве на частоте 1420 МГц (что соответствует длине волны 21 см). Излучение на этой частоте (или, как говорят, в радиолинии) предсказал голландский астроном Хендрик ван де Хюлст в 1944 на основании квантовой механики, а обнаружено оно было в 1951 г. после расчета ее ожидаемой интенсивности советским астрофизиком И.С.Шкловским. Шкловский же указал и на возможность наблюдения излучения различных молекул в радиодиапазоне, которое, действительно, было позднее обнаружено. Масса межзвездного газа, состоящего из нейтральных атомов и очень холодного молекулярного газа, оказалось примерно в сто раз большей, чем масса разреженной пыли. Но газ совершенно прозрачен для видимого света, поэтому его нельзя было обнаружить теми же методами, какими была открыта пыль.

С появлением рентгеновских телескопов, устанавливаемых на космических обсерваториях, был обнаружен еще один, наиболее горячий компонент межзвездной среды – очень разреженный газ с температурой в миллионы и десятки миллионов градусов. Ни по оптическим наблюдениям, ни по наблюдениям в радиолиниях этот газ «увидеть» невозможно – среда слишком разрежена и полностью ионизована, но, тем не менее, он заполняет существенную долю объема всей нашей Галактики.

Быстрое развитие астрофизики, изучающей взаимодействие вещества и излучения в космическом пространстве, как и появление новых возможностей наблюдений, позволило детально исследовать физические процессы в межзвездной среде. Возникли целые научные направления – космическая газодинамика и космическая электродинамика, изучающие свойства разреженных космических сред. Астрономы научились определять расстояния до газовых облаков, измерять температуру, плотность и давление газа, его химический состав, оценивать скорости движения вещества. Во второй половине 20 в. выявилась сложная картина пространственного распределения межзвездной среды и ее взаимодействия со звездами. Оказалось, что от плотности и количества межзвездного газа и пыли зависит возможность зарождения звезд, а звезды (прежде всего, наиболее массивные из них), в свою очередь, меняют свойства окружающей межзвездной среды – нагревают ее, поддерживают непрестанное движение газа, пополняют среду своим веществом, меняют ее химический состав. Изучение такой сложной системы как «звезды – межзвездная среда» оказалось очень сложной астрофизической задачей, особенно если учесть, что общая масса межзвездной среды в Галактике и ее химический состав медленно изменяются под действием различных факторов. Поэтому можно сказать, что в межзвездной среде отражена вся история нашей звездной системы продолжительностью в миллиарды лет.

Каплан С.А., Пикельнер С.Б. Физика межзвездной среды . М., 1979
Шкловский И.С. Звезды: их рождение, жизнь и смерть . М., 1984
Спитцер Л. Пространство между звездами . М., 1986
Бочкарев Н.Г. Основы физики межзвездной среды . М., 1992
Сурдин В.Г. Рождение звезд . М., 1997
Кононович Э.В., Мороз В.И. Общий курс астрономии . М., 2001

Найти "МЕЖЗВЕЗДНАЯ СРЕДА " на

Газовые туманности. Самая известная газовая туманность - в созвездии Ориона (229), протяженностью свыше 6 пс, заметная в безлунную ночь даже невооруженным глазом. Не менее красивы туманности Омега, Лагуна и Трехраздельная в созвездии Стрельца, Северная Америка и Пеликан в Лебеде, туманности в Плеядах, вблизи звезды h Киля, Розетка в созвездии Единорога и многие другие. Всего насчитывают около 400 таких объектов. Естественно, что полное их число в Галактике значительно больше, но мы их не видим из-за сильного межзвездного поглощения света. В спектрах газовых туманностей имеются яркие эмиссионные линии, что доказывает газовую природу их свечения. У наиболее ярких туманностей прослеживается и слабый непрерывный спектр. Как правило, сильнее всех выделяются водородные линии Нa и Нb и знаменитые небулярные линии с длинами волн 5007 и 4950 Å, возникающие при запрещенных переходах дважды ионизованного кислорода О III. До того, как эти линии удалось отождествить, предполагалось, что их излучает гипотетический элемент небулий. Интенсивны также две близкие запрещенные линии однократно ионизованного кислорода О II с длинами волн около 3727 Å, линии азота и ряда других элементов. Внутри газовой туманности или непосредственно вблизи от нее почти всегда можно найти горячую звезду спектрального класса О или В0, являющуюся причиной свечения всей туманности. Эти горячие звезды обладают очень мощным ультрафиолетовым излучением, ионизующим и заставляющим светиться окружающий газ точно так же, как это имеет место в планетарных туманностях (см. § 152). Поглощенная атомом туманности энергия ультрафиолетового кванта звезды большей частью идет на ионизацию атома. Остаток энергии расходуется на придание скорости свободному электрону, т. е. в конечном счете превращается в тепло. В ионизованном газе должны также происходить и обратные процессы рекомбинации с возвращением электрона в связанное состояние. Однако чаще всего это реализуется через промежуточные энергетические уровни, так что в итоге вместо первоначально поглощенного жесткого ультрафиолетового кванта атомы туманности излучают несколько менее энергичных квантов видимых лучей (этот процесс называется флуоресценцией). Таким образом, в туманности происходит как бы «дробление» ультрафиолетовых квантов звезды и переработка их в излучение, соответствующее спектральным линиям видимого спектра. Излучение в линиях водорода, ионизованного кислорода и азота, приводящее к охлаждению газа, уравновешивает поступление тепла через ионизацию. В итоге температура туманности устанавливается на некотором определенном уровне порядка, что можно проверить по тепловому радиоизлучению газа. Количество квантов, излучаемых в какой-либо спектральной линии, в конечном счете пропорционально числу рекомбинаций, т. е. количеству столкновений электронов с ионами. В сильно ионизованном газе концентрация и тех и других одинакова, т. е. Поскольку согласно (7.18) частота столкновений одной частицы пропорциональна п, общее число столкновений всех ионов с электронами в единице объема пропорционально произведению nine, т. е. Следовательно, общее число квантов, излучаемых туманностью, или ее яркость на небе - пропорциональна, просуммированному вдоль луча зрения. Для однородной туманности протяженностью L, это дает. Произведение называется мерой эмиссии и является важнейшей характеристикой газовой туманности: ее значение легко получить из непосредственных наблюдений яркости туманности. Вместе с тем мера эмиссии связана с основным физическим параметром туманности - плотностью газа. Таким образом, измеряя меру эмиссии газовых туманностей, можно оценить концентрацию частиц пе, которая оказывается порядка 10 2−10 3 см −3 и даже больше для самых ярких из них. Как видно, концентрация частиц в газовых туманностях в миллионы раз меньше, чем в солнечной короне, и в миллиарды раз меньше, чем могут обеспечить лучшие современные вакуумные насосы. Необычайно сильная разреженность газа объясняет появление в его спектре запрещенных линий, сравнимых по своей интенсивности с разрешенными. В обычном газе возбужденные атомы не успевают излучить запрещенную линию потому, что гораздо раньше, чем это произойдет, они столкнутся с другими частицами (в первую очередь электронами) и отдадут им свою энергию возбуждения без излучения кванта. В газовых туманностях при температуре 104 ёK средняя тепловая скорость электронов достигает 500 км/сек и время между столкновениями, вычисленное по формуле (7.17) при концентрации ne = 102 см −3, оказывается 2×106 сек, т. е. немногим меньше месяца, что в миллионы раз превышает «время жизни» атома в возбужденном состоянии для большинства запрещенных переходов. Зоны H I и Н II. Как мы только что видели, горячие звезды на больших расстояниях вокруг себя ионизуют газ. Поскольку в основном это водород, ионизуют его главным образом лаймановские кванты с длиной волны короче 912 Å. Но в большом количестве их могут дать только звезды спектральных классов О и В0, у которых эффективные температуры Tэфф ³ 3×104 ёK и максимум излучения расположен в ультрафиолетовой части спектра. Расчеты показывают, что эти звезды способны ионизовать газ с концентрацией 1 атом в 1 см3 до расстояний нескольких десятков парсеков. Ионизованный газ прозрачен к ультрафиолетовому излучению, нейтральный, наоборот, жадно его поглощает. В результате окружающая горячую звезду область ионизации (в однородной среде это шар!) имеет очень резкую границу, дальше которой газ остается нейтральным. Таким образом, газ в межзвездной среде может быть либо полностью ионизован, либо нейтрален. Первые области называются зоны Н II, вторые - зоны H I. Горячих звезд сравнительно мало, а потому газовые туманности составляют ничтожную долю (около 5%) всей межзвездной среды. Нагрев областей Н I происходит за счет ионизующего действия космических лучей, рентгеновских квантов и суммарного фотонного излучения звезд. При этом в первую очередь ионизуются атомы углерода. Излучение ионизованного углерода является основным механизмом охлаждения газа в зонах Н I. В результате должно установиться равновесие между потерей энергии и ее поступлением, которое имеет место при двух температурных режимах, осуществляющихся в зависимости от значения плотности. Первый из них, когда температура устанавливается в несколько сотен градусов, реализуется в разово-пылевых облаках, где плотность относительно велика, второй - в пространстве между ними, в котором разреженный газ нагревается до нескольких тысяч градусов. Области с промежуточными значениями плотности оказываются неустойчивыми и первоначально однородный газ неизбежно должен разделиться на две фазы - сравнительно плотные облака и окружающую их весьма разреженную среду. Таким образом, тепловая неустойчивость является важнейшей причиной «клочковатой» и облачной структуры межзвездной среды. Межзвездные линии поглощения. Существование холодного газа в пространстве между звездами было доказано в самом начале XX в. немецким астрономом Гартманом, изучившим спектры двойных звезд, в которых спектральные линии, как отмечалось в § 157, должны испытывать периодические смещения. Гартман обнаружил в спектрах некоторых звезд (особенно удаленных и горячих) стационарные (т. е. не изменявшие своей длины волны) линии H и К ионизованного кальция. Помимо того, что их длины волн не менялись, как у всех остальных линий, они отличались еще своей меньшей шириной. Вместе с тем, у достаточно горячих звезд линии Н и К вообще отсутствуют. Все это говорит о том, что стационарные линии возникают не в атмосфере звезды, а обусловлены поглощением газа в пространстве между звездами. Впоследствии обнаружились межзвездные линии поглощения и других атомов: нейтрального кальция, натрия, калия, железа, титана, а также некоторых молекулярных соединений. Однако наиболее полным спектроскопическое исследование холодного межзвездного газа стало возможным благодаря внеатмосферным наблюдениям межзвездных линий поглощения в далекой ультрафиолетовой части спектра, где сосредоточены резонансные линии важнейших химических элементов, в которых, очевидно, сильнее всего должен поглощать «холодный» газ. В частности, наблюдались резонансные линии водорода (La), углерода, азота, кислорода, магния, кремния и других атомов. По интенсивностям резонансных линий можно получить наиболее надежные данные о химическом составе. Оказалось, что состав межзвездного газа в общем близок к стандартному химическому составу звезд, хотя некоторые тяжелые элементы содержатся в нем в меньшем количестве. Исследование межзвездных линий поглощения с большой дисперсией позволяет заметить, что чаще всего они распадаются на несколько отдельных узких компонентов с различными доплеровскими смещениями, соответствующими в среднем лучевым скоростям ±10 км/сек. Это означает, что в зонах Н I газ сконцентрирован в отдельных облаках, размеры и расположение которых в точности соответствуют пылевым облакам, рассмотренным в конце предыдущего параграфа. Отличие лишь в том, что газа по массе в среднем раз в 100 больше. Следовательно, газ и пыль в межзвездной среде концентрируются в одних и тех же местах, хотя относительная их плотность может сильно меняться при переходе от одной области к другой. Наряду с отдельными облаками, состоящими из ионизованного или нейтрального газа, в Галактике наблюдаются значительно большие по своим размерам, массе и плотности области холодного межзвездного вещества, называемые газово-пылевыми комплексами. Самым близким к нам из них является известный комплекс в Орионе, включающий в себя наряду с многими замечательными объектами знаменитую туманность Ориона. В таких областях, отличающихся сложной и весьма неоднородной структурой, происходит исключительно важный для космогонии процесс звездообразования. Монохроматическое излучение нейтрального водорода. Межзвездные линии поглощения в какой-то степени дают лишь косвенный способ выяснить свойства областей Н I. Во всяком случае, это может быть сделано только в направлении на горячие звезды. Наиболее полную картину распределения нейтрального водорода в Галактике возможно составить только на основании собственного излучения водорода. К счастью, такая возможность имеется в радиоастрономии благодаря существованию спектральной линии излучения нейтрального водорода на волне 21 см. Общее количество атомов водорода, излучающих линию 21 см, настолько велико, что лежащий в плоскости Галактики слой оказывается существенно непрозрачным к радиоизлучению 21 см на протяжении всего лишь 1 кпс. Поэтому если бы весь нейтральный водород, находящийся в Галактике, был неподвижен, мы не могли бы наблюдать его дальше расстояния, составляющего около 3% размеров Галактики. В действительности это имеет место, к счастью, только в направлениях на центр и антицентр Галактики, в которых, как мы видели в § 167, нет относительных движений вдоль луча зрения. Однако во всех остальных направлениях из-за галактического вращения имеется возрастающая с расстоянием разность лучевых скоростей различных объектов. Поэтому можно считать, что каждая область Галактики, характеризующаяся определенным значением лучевой скорости, вследствие доплеровского смещения излучает как бы «свою» линию с длиной волны не 21 см, а чуть больше или меньше, в зависимости от направления лучевой скорости. У объемов газа, расположенных ближе, это смешение иное, и потому они не препятствуют наблюдениям более далеких областей. Профиль каждой такой линии дает представление о плотности газа на расстоянии, соответствующем данной величине эффекта дифференциального вращения Галактики. На 230 изображено полученное таким путем распределение нейтрального водорода в Галактике. Из рисунка видно, что нейтральный водород распределен в Галактике неравномерно. Намечаются увеличения плотности на определенных расстояниях от центра, которые, по-видимому, являются элементами спиральной структуры Галактики, подтверждаемой распределением горячих звезд и диффузных туманностей. На основании поляризации света, обнаруженной у далеких звезд, есть основания полагать, что вдоль спиральных рукавов направлены силовые линии основной части магнитного поля. Галактики, о котором речь еще будет идти в связи с космическими лучами. Влиянием этого поля можно объяснить тот факт, что большинство как светлых, так и темных туманностей вытянуто вдоль спиральных ветвей, само возникновение которых должно быть как-то связано с магнитным полем. Межзвездные молекулы. Некоторые межзвездные линии поглощения были отождествлены со спектрами молекул. Однако в оптическом диапазоне они представлены только соединениями СН, СН+ и CN. Существенно новый этап в изучении межзвездной среды начался в 1963 г., когда в диапазоне длин волн 18 см удалось зарегистрировать радиолинии поглощения гидроксила, предсказанные еще в 1953 г. В начале 70-х годов в спектре радиоизлучения межзвездной среды были обнаружены. линии еще нескольких десятков молекул, а в 1973 г. на специальном ИСЗ «Коперник» была сфотографирована резонансная линия межзвездной молекулы Н2 с длиной волны 1092 Å. Оказалось, что молекулярный водород составляет весьма заметную долю межзвездной среды. На основании молекулярных, спектров проведен детальный анализ условий в «холодных» облаках Н I, уточнены процессы, определяющие их тепловое равновесие, и получены данные о двух тепловых режимах, приведенные выше. Детальное исследование спектров межзвездных молекулярных соединений СН, СН+, CN, Н2, СО, ОН, CS, SiO, SO и других позволило выявить существование нового элемента структуры межзвездной среды - молекулярных, облаков, в которых. сосредоточена значительная часть межзвездного вещества. Температура газа в таких облаках может составлять от 5 до 50 ёК, а концентрация молекул достигать нескольких тысяч молекул в 1 см −3, а иногда и существенно больше. Космические мазеры. В радиоспектре некоторых газово-пылевых облаков вместо линий поглощения гидроксила совершенно неожиданно обнаружились… линии излучения. Это излучение отличается рядом важных особенностей. Прежде всего, относительная интенсивность всех четырех радиолиний излучения гидроксила оказалась аномальной, т. е. не соответствующей температуре газа, а излучение в них очень сильно поляризованным (иногда до 100%). Сами линии чрезвычайно узки. Это означает, что они не могут излучаться обычными атомами, совершающими тепловое движение. С другой стороны, оказалось, что источники гидроксильной эмиссии обладают настолько малыми размерами (десятки астрономических единиц!), что для получения наблюдаемого от них потока излучения необходимо приписать им чудовищную яркость - такую, как у тела, нагретого до температуры 1014−1015 ёK! Ясно, что ни о каком тепловом механизме возникновения таких мощностей не может быть и речи. Вскоре после обнаружения эмиссии ОН был открыт новый тип исключительно ярких «сверхкомпактных» источников, излучающих радиолинию водяных паров с длиной волны 1,35 см. Вывод о необычайной компактности источников эмиссии ОН получается непосредственно из наблюдений их угловых размеров. Современные методы радиоастрономии позволяют определять угловые размеры точечных источников с разрешающей силой в тысячи раз лучшей, чем у оптических телескопов. Для этого используются синхронно работающие антенны (интерферометр), расположенные в различных частях земного шара (межконтинентальные интерферометры). С их помощью найдено, что угловые размеры многих компактных источников менее 3×10−4 секунды дуги! Важной особенностью излучения компактных источников является его переменность, особенно сильная в случае эмиссии Н2О. За несколько недель и даже дней профиль линий совсем меняется. Порой существенные вариации происходят за 5 минут, что возможно только в том случае, если размеры источников не превышают расстояния, которое свет проходит за это время (иначе флуктуации статистически будут компенсированы). Таким образом, размеры областей, излучающих линии Н2О, могут быть порядка 1 а.e.! Как показывают наблюдения, в одной и той же области с размерами в несколько десятых долей парсека может находиться множество источников, часть из которых излучает только линии ОН, а часть - только линии H2O. Единственным известным пока в физике механизмом излучения, способным дать огромную мощность в пределах исключительно узкого интервала спектра, является когерентное (т. е. одинаковое по фазе и направлению) излучение квантовых генераторов, которые в оптическом диапазоне принято называть лазерами, а в радиодиапазоне - мазерами. Компактные источники эмиссии ОН и Н2О, скорее всего, гигантские естественные космические мазеры. Имеются все основания полагать, что космические мазеры связаны с областями, где буквально на наших глазах происходит процесс звездообразования. Они чаще всего встречаются в зонах Н II, где уже возникли молодые массивные и очень горячие звезды спектральных классов О и В. Во многих случаях они совпадают с весьма компактными, богатыми пылью, а потому весьма непрозрачными особыми зонами Н II, которые обнаруживаются только благодаря их тепловому радиоизлучению. Размеры этих зон порядка 0,1 пс, а плотность вещества в сотни раз больше, чем в обычных межзвездных облаках. Причиной их ионизации, очевидно, является ненаблюдаемая горячая звезда, окруженная плотным непрозрачным облаком. Иногда эти объекты наблюдаются в виде точечных источников инфракрасного излучения. Они заведомо должны быть исключительно молодыми образованиями с возрастом порядка десятков тысяч лет. За большее время окружающая только что возникшую горячую звезду плотная газово-пылевая среда должна расширяться под действием светового давления горячей звезды, которая тем самым окажется видимой. Такие звезды, окруженные расширяющейся плотной оболочкой, получили образное название «звёзды-коконы». В этих весьма специфичных, но тем не менее естественных условиях, по-видимому, и реализуется мазерный эффект.