Общая характеристика и классификация технологического оборудования. Основные технологические характеристики, которые определяют функциональные особенности SATA Задание к выполнению курсового проекта

22. Основные технологические характеристики зданий

Для организации мсп рекомендуется применять одноэтажные здания, т.к. в этом случае облегчается установка технологического оборудования, упрощаются транспортные связи м-у цехами. Многоэтажное здание проектируют при мелком оборудовании. При выборе здания определяют след. хар-ки – высота пролета, длина пролета, сетка колонн, которая характеризуется шириной пролета и шагом колонн. Обычно здание имеет 1 или несколько пролетов. Пролет – часть здания, ограниченная в продольном направлении двумя рядами колонн. Ширина пролета – расстояние м-у осями колонн в продольном направлении. Высота пролета – расстояние от уровня пола до нижней части несущих конструкций покрытия здания.

Ширину пролета здания выбирают такой, чтобы можно было рационально разместить четное число рядов станков в зависимости от габаритных размеров и варианта размещения. Шаг колонн для большинства схем зданий принимают 12 м для внутренних рядов колонн и 6 м для колонн периметра здания. Сетка колонн для одноэтажных бескрановых зданий 12х6, 18х6, 18х12, 24х6, 24х12.

Для одноэтажных зданий, оборудованных мостовыми кранами до 50 т 18х6, 18х12, 24х6, 24х12, 30х12.

Длина пролета L = n*t, где n – число шагов, t – шаг колонн. Длина пролета определяется по длине технологической линии устанавливаемого оборудования. Длина поточных линий больше чем длина детально специализированного участка непоточного производства. Для механических цехов автомобилестроения длину поточной линии рекомендуется ограничивать до 50-60 м. При необходимости иметь большую длину поток обычно меняет свое направление.

23. Выбор оптимальной компоновочной схемы цеха поточного, крупносерийного и массового производства

В поточном и крупносерийном производстве предметно специализированные цеха имеют следующие компоновочные схемы. Мсц состоит из ряда параллельно расположенных участков механической обработки переменно или непрерывно поточных линий и линии или участка узловой сборки. Рабочее место узловой сборки размещают в конце линии механической обработки. При конвейерной общей сборке участки мехобработки и узловой сборки размещают в соответствии с последовательностью установки сб.ед. и деталей в изделии на главном конвейере, расположенном перпендикулярно линиям механической обработки после узловой сборки в конце корпуса (а) или в его середине (б). Этим обеспечивается принцип прямоточности производства. Вариант б используется при производстве изделий с большим числом коротких линий механической обработки и относительно небольшой трудоемкости общей сборки. При выборе схемы нового здания придерживаются следующих принципов:

1) промышленное здание следует проектировать с пролетами одного направления, одинаковой ширины и высоты;

2) промышленное здание должно быть прямоугольной формы.

24. Выбор оптимальной компоновочной схемы цеха поточного мелкосерийного и единичного производства

В серийном и единичном производстве применяют компоновочные схемы с размещением цеха общей сборки в отдельном пролете параллельно или перпендикулярно пролетам мех.обр. Используют непоточную стационарную сборку, поэтому взаимное размещение участков мех.обр. определяет в большей степени технологическая однородность обрабатываемых деталей и применяемых видов транспорта. Участок общей сборки необходимо оборудовать мостовым краном, чтобы обеспечить возможность выполнения сборки крупных тяжелых изделий. Кроме того один из пролетов мех.обр. в котором сосредоточено оборудование для изготовления тяжелых деталей д.б. оснащен мостовым краном. При параллельном расположении пролетов участок базовых деталей целесообразно располагать рядом с целью минимизации грузопотоков.

Нецелесообразно располагать рядом участки обработки деталей высокой и низкой точности ввиду неизбежного влияния вибраций неточного оборудования на точность изготовления ответственных деталей. Также недопустимо смежное размещение участков абразивной обработки и сборки (абразивная пыль оседает на деталях). Пожароопасные или вредные для здоровья участки должны быть изолированы от других производств перегородками и оборудованы системами очистки воздуха.


25. Предварительное определение площади цеха

При предварительной проработке компоновочной схемы общую площадь участка (цеха) Sо определяют по показателю удельной площади цеха, участка – площади, приходящейся на 1 станок или одно рабочее место. So = Sуд.о.*Сприн, где Сприн – принятое количество станков в цехе (число рабочих мест для сборки) Sуд.о. зависит от габаритных размеров применяемого оборудования и транспортных средств. Для средних станков 18…22 м^2 при наибольшем габарите 4 м, для мелких станков 14…18 м^2 1,8 м.

26. Выбор варианта расположения оборудования непрерывно-поточных и переменно-поточных линий

Последовательность размещения оборудования практически однозначно определяется последовательностью выполнения операций ТП. Задача размещения оборудования сводится к выбору варианта размещения станков относительно транспортного средства, определение числа рядов станков и общей конфигурации поточной линии.

Относительно транспортного средства:

1) продольное размещение. Планировка обеспечивает благоприятные условия для механизации и автоматизации межоперационного транспорта (конвейер), но при наличии оборудования разных габаритов планировка может получиться некомпактной

2) Поперечное расположение – обеспечивает большую компактность, но рабочее место удаляется от конвейера с деталями, сложно внедрить стружкоуборочный конвейер. Схема рациональна для использования роботов.

3) Угловое расположение используется для обеспечения большей компактности планировки.

4) Кольцевое расположение рационально для многостаночного обслуживания. Трудности по использованию межоперационного транспорта.

В зависимости от длины технологического потока и длины станочного участка применяют – однорядное или многорядное размещение станков. При этом для обеспечения прямоточности производственного процесса начало линии (зону заготовок) располагают со стороны одного проезда, а конец линии с противоположной стороны. Применяют следующие варианты размещения – однорядный, последовательное размещение, поточные линии с большим количеством станков размещают в несколько рядов, чтобы начало линии располагалось со стороны зоны заготовок, а конец с противоположной стороны, нечетное число линий.


1. Номер схемы: 1.

3. Пролет: L = 9 м.

6. Шаг колонy: R=12 м

7. Число цифровых осей: 23шт.

8. Число шага: n-1=22 шт.

10. Группа грунта: III.

V р

V пл

V упл

Схема откоса.


Состав комплексного процесса работ нулевого цикла.

Технологическая последовательность.

Производственный процесс работ нулевого цикла, как правило, включает:

Подготовительные работы:

1. разбивка земляных сооружений, м 2 ;

2. корчевка пней и кустарников, м 2 ;

3. устройство водоотвода, водоотлива, водопонижения, м 2 .

Земляные работы:

1. снятие растительного слоя, м 2 ;

2. разрыхление грунта, м 3 ;

3. разработка грунта бульдозером или экскаватором, м 3 ;

4. выгрузка грунта в отвал или транспортное средство, м 3 ;

5. транспортировка грунта автосамосвалами, м 3 ;

6. разработка недобора грунта, м 3 ;

7. обратная засыпка пазух (после возведения подземной части здания), м 3 ;

8. уплотнение грунта, м 3 .

Монтаж подземной части:

1. устройство выравнивающего слоя (песок, товарный бетон), м 3 ;

2. монтаж фундаментных плит, м 3 ;

3. монтаж бетонных стеновых блоков (подвала), м 3 ;

4. заделка стыков бетонных стеновых блоков подвала (бетон, раствор), м 3 ;

5. электросварка закладных частей сварных железобетонных конструкций;

6. устройство гидроизоляции стен подвала;

7. монтаж плит перекрытия на отм. 0.000;

8. заделка стыков плит перекрытия (бетон), м 3 .


Компоновка конструктивной части фундамента

На основе исходных данных компонуется конструктивная часть фундаментов здания, определяется количество типоразмеров конструкций и в соответствии с приложением 17 составляется сборных железобетонных конструкций по форме 2.

Таблица 2 - Спецификация сборных железобетонных конструкций

№№ п/п Марка ж/б констру кции Основные размеры, мм Объем одного элем. Vэл, м 3 Масса одного элем. Q эл, т Кол-во элементов N эл Общая масса элем. Класс бетона Примеч. Общий объем элем.
b h
Ф-1 1,34 3,40 В22,5 L=9M 241,2
Ф-2 1,70 4,85 87,3 В22,5 темпер, шов 30,6
ФБ 0,35 1,8 97,2 В22,5 L=12м 18,9
Итого: 290,7

Подсчет объемов грунта для обратной засыпки

С учетом конструкций установленных ниже дневной поверхности Я гориз необходимо определить объем грунта для обратной засыпки пазух котлована и других объемов.

Объем обратной засыпки грунта должен учитывать объем пазух по периметру сооружения с учетом коэффициента остаточного разрыхления ЛГ ор.

Объем грунта, подлежащий обратной засыпке в пазухи котлована, определяется по формуле:

V оз =V k -V жбж

где:V жбж - объем железобетонных и бетонных конструкций отдельных столбчатых или ленточных фундаментов.

V оз =198

Рисунок 4 - Определение размеров пазух котлована для подсчета

обратной засыпки грунта

Технология и организация комплексно-механизированных работ по

Разработке котлована.

Организация и технология выполнения комплексно-механизированных работ включает:

Определение технологической последовательности производства комплексно-механизированных работ;

Составление схем организации работы машин;

Определение сменной эксплутационной производительности всех машин и обоснование числа машин комплекта.

Технологическая последовательность работ при рытье котлованов и траншей состоит: в разработке грунта экскаватором с выгрузкой в отвал или на транспортные средства; в транспортировке грунта и зачистке дна и откосов.

Определяя технологию производства работ по выемке грунта из котлованов и траншей, следует учитывать указанный в задании уровень грунтовых вод и предусматривать методы водопонижения или открытого водоотлива с необходимыми расчетами и подбором технических средств.

Расчет производительности ведущих машин.

Для отрывки котлована и траншей под здания с ленточными фундаментами применяют экскаваторы с обратной лопатой.

Расчёт часовой производительности экскаватора

где: q=0,65 - ёмкость ковша, м 3

t ц = 30 сек

Необходимое количество экскаваторов

где: V см =1511,235 м 3

n= 1511,235/(38,61*8) = 5шт.

Необходимое количество транспортных средств

– время одного цикла работы транспортной единицы;

– расчетное время загрузки транспортной единицы,

– время в пути,

– время разгрузки (1 мин)

– время маневрирования транспортной единицы перед погрузкой и разгрузкой (2 мин.).

При определении сначала подсчитывают количество ковшей с грунтом «n», требующихся для заполнения 1 транспортной единицы:

– грузоподъемность транспортной единицы;

– плотность грунта, =1,95 ;

–коэффициент наполнения ковша с учетом разрыхления, ;

– объем ковша, .

Принимаем по приложению Ж в качестве транспортного средства автосамосвал ЯАЗ 210Е(КрАЗ222), для которого Q=10 т.

Определим вместимость транспортной единицы по формуле:

Определим время загрузки:

Определим время пути:

– дальность возки грунта, км;

Количество автосамосвалов

Принимаем 10 автосамосвалов ЯАЗ 210Е(КрАЗ222),.

Обратную засыпку пазух фундаментов проводим бульдозером.

Монтаж конструкций цокольной части здания


№ п/п Основание норм и расценок Описание и условие проведения работ Единица измерения Формула подсчета Объем работ
Е6-1-25 Разбивка сооружения 100 п/м (1584+1035)/100 26,19
Е49-1-57 Корчевание пней, кустов 1 пень из расчета
Е2-1-5 Срезка растительного слоя 1000 м 2 (272*53)/1000 14,416
Е2-1-11 Разработка грунта III группы экскаватором с обратной лопатой, объемом 0,65: на вымет 100 м 3 V оз /100 59,58
с погрузкой в транспортные средства 100 м 3 (Vоз – Vобщ)/100 0,87
Е2-1-47 Зачистка дна котлована 1 м 3 v n 178,2
Е1-73 Поднос песка 1 м 3 ∑0.1*Sподошвы 93,6
Е1-73 Устройство песчаной подушки 1 м 3 ∑0.1*Sподошвы 93,6
Е4-1-1 Монтаж Ф-1 шт. из плана разложения
Е4-1-1 Монтаж Ф-2 шт. из плана разложения
Е4-1-6 Монтаж фундаментных балок ФБ-1 шт. из плана разложения
Е4-1-6 Монтаж фундаментных балок ФБ-2 шт. из плана разложения
Е11-37 Устройство обмазочной гидроизоляции (горячим битумом или битумными мастиками) 100 м 2 ∑S б.п Ф /100 14,4
Е2-1-34 Обратная засыпка пазух фундамента бульдозером 100 м 2 V O3 /100 59,58

Согласно спецификации сборных железобетонных и бетонных элементов составляется ведомость подсчета объема работ нулевого цикла.

Литература

1. ЕНиР Е2. Земляные работы. Механизированные и ручные земляные работы. - М.: Стройиздат, 1988.-Вып. 1.

2. ЕНиР Е4. Монтаж сборных и устройство монолитных железобетонных конструкций. - М.: Стройиздат, 1987. - Вып. 1.

3. СНиП 12-03-2001. Безопасность труда в строительстве. 4.1. Общие требования / Госстрой РФ.-М.: Строиздат, 2001.

4. СНиП 4.02-91. Сборник 1. Сметные нормы и расценки на земляные работы.

5. СНиП 4.03-91. Сборник сметных норм и расценок на эксплуатацию строительных машин.

6. Стреловые самоходные краны и строповка грузов: Справ, изд/ Ткач JI. П., Сленчук Н.А., Носов А. И. и др.-М.: Металлургия, 1990. 272 с.

7. технология строительных процессов: Учеб./ А. А. Афанасьев, Н. Н. Данилов, В. Д. Копылов и др.; под ред. Н. Н. Данилова, О. М. Терентьева. - М.: Высшая школа, 2001.-464 е.: ил.

8. Технологические карты на комплексно-механизированные процессы производства земляных работ с применением новых серийно выпускаемых машин/ Госстрой СССР. УНИИОМТП.-М., 1983,- 140 с.

9. Хамзин С. К., Карасев А. К Технология строительного производства. Курсовое и дипломное проектирование. Учеб. Пособие для строительных спец. Вузов. М.: Высшая школа, 1989г.

Задание к выполнению курсового проекта.

1. Номер схемы: 1.

2. Глубина подошвы фундамента: Н = 2,1 м.

3. Пролет: L = 9 м.

4. Число буквенных осей: N = 6 шт.

5. Количество пролетов: N – 1 = 5 шт.

6. Шаг колонy: R=12 м

7. Число цифровых осей: 23шт.

8. Число шага: n-1=22 шт.

9. Продолжительность земляных работ: Т = 2 дня.

10. Группа грунта: III.

11. Дальность возки грунта: 30 км.

Вид грунта: суглинок тяжелый с примесью щебня свыше 10% по объему. Объемный вес 1950

Основные технологические характеристики разрабатываемого грунта

Определяем наименование грунта и его плотность при разработке одноковшовым экскаватором. По табл.1 ЕНиР Е2-1 определяем группу грунта по трудности разработки – III.

По приложению 1 методических указаний согласно наименованию грунта определяем коэффициенты разрыхления грунта:

V р -объем грунта в разрабатываемом состоянии;

V пл - объем грунта в плотном теле.

Коэффициент остаточного разрыхления грунта:

V упл - объем разрыхленного грунта после уплотнения при разработке.

Схема откоса.

Устойчивость грунта в откосах характеризуется физическими свойствами грунта (силой сцепления частиц, давлением вышележащих слоев, углом внутреннего трения и др.), при которых грунт находится в состоянии устойчивости.

По приложению 5 методических указаний наибольшая допустимая крутизна откоса при глубине выемки до 3 м составляет 63°, а крутизна заложения:

Характеристика условий разработки грунта.

Технологическое оснащение предприятий автосервиса, являясь составляющим элементом производственно-технической базы (ПТБ), в значительной мере определяет производительность и качество работ по техническому обслуживанию и ремонту автомобилей, условия труда персонала, защиту окружающей среды.

Техническое оснащение предприятия, предназначенное для осуществления технологических процессов основного производства, включает в себя инженерные сооружения, технологическое оборудование, оснастку, инструмент, средства измерения и контроля (рисунок 1.1).

Рисунок 1.1 - Структура парка технологических сооружений, оборудования, оснастки и инструмента предприятий автосервиса

К инженерным технологическим сооружениям относятся осмотровые канавы, эстакады, одно- и многоярусные площадки и лестницы.

Технологическое оборудование состоит из машин и аппаратов. Технологические машины осуществляют воздействие на предмет труда за счет затрат и преобразований в основном механической энергии (металлообрабатывающий станок, пресс, автомобильный подъемник и др.). В технологических аппаратах обработка предметов труда происходит при помощи энергий немеханических видов (тепловой , химической , ультразвуковой и др;). К аппаратам относятся шланговые моечные установки, сварочное, окрасочное оборудование и др. В отдельных видах оборудования используется как механическая, так и немеханическая энергия. В этом случае отнесение оборудования к группе машин или аппаратов производится на основании определения вида энергии, дающей основное технологическое воздействие.

Технологическое оборудование, в зависимости от целевого назначения, делится на две группы: общепромышленное оборудование и оборудование отраслевое.

В первую группу входит производственное оборудование, которое широко применяется не только на предприятиях автосервиса, но и на других объектах разных отраслей экономики. Сюда относится оборудование для выполнения сварочных, кузнечных, металлообрабатывающих, медницких, аккумуляторных, электроремонтных, радиотехнических, деревообрабатывающих и прочих работ.

Отраслевое технологическое оборудование создано специально для использования на предприятиях автомобильного транспорта с целью поддержания или восстановления технически исправного состояния автомобиля, его агрегатов и систем.

Современное технологическое оборудование, выпускаемое отечественными и зарубежными заводами, достаточно разнообразно по номенклатуре, назначению, рабочим процессам, техническим параметрам, технологическим и конструктивным характеристикам, приводным устройствам и т. п. При всем многообразии конструкций парк технологического оборудования, в зависимости от вида обобщающих признаков, может быть разделен на отдельные классификационные группы.


К таким признакам относятся:

Функциональное назначение;

Организационно-технологическая применяемость;

Технологическое назначение выполняемых операций;

Характер машинного или аппаратного процесса;

Физическое содержание технологического процесса, лежащего в основе машинной (аппаратной) операции;

Характер взаимодействия рабочих органов оборудования с объектом обработки;

Вид привода;

Степень автоматизации, конструктивное исполнение и др.

В зависимости от организационно-технологической применяемости на предприятиях автосервиса различают оборудование постовое и участковое. Постовое оборудование предназначено для обслуживания и ремонта автомобиля, установленного на посту (автомобильные подъемники, портальные и туннельные моечные установки, оборудование для регулировки углов установки управляемых колес и др.).

Участковое оборудование используется для диагностики, регулировки и восстановления технической исправности отдельных агрегатов, сборочных единиц и деталей, снятых с автомобиля (балансировочные станки, стенды для проверки изделий электрооборудования автомобиля, станки для правки колесных дисков и др.).

Для малых предприятий автосервиса и мастерских такое деление оборудования является весьма условным, так как для них характерно совмещение в одном производственном помещении постовых и участковых работ.

Технологическое оборудование для автосервиса выпускается с различным видом привода: электромеханическим, электрогидравлическим, пневматическим, мускульным, комбинированным, — а также без привода.

Анализ технологических возможностей оборудования позволяет разделить его на две группы по уровню специализации — универсальное и специальное.

К универсальному относится оборудование, предназначенное для выполнения значительного количества разноименных операций на конструктивно различных изделиях. Наиболее характерным представителем этой группы является передвижная шланговая моечная установка высокого давления, которую можно использовать для наружной мойки любых моделей и типов автомобилей, мойки всех полостей кузова, а также агрегатов и деталей. К этой группе относятся также мотор-тестеры, оборудование для кузовных работ и др.

Специальное (или специализированное) оборудование предназначено для выполнения одной или нескольких технологически связанных операций (как правило, не более двух-трех) на различных изделиях (моделях) или обработки только одного вида (модели) изделия, например автомобильный подъемник или станок для балансировки колес непосредственно на легковом автомобиле. Степень универсальности является одной из важнейших технических характеристик оборудования, определяющих его применимость и экономическую эффективность на предприятиях различной мощности и специализации.

По уровню автоматизации технологическое оборудование может быть неавтоматизированным, частично автоматизированным или автоматического действия. В неавтоматизированном оборудовании механизированы только основные операции. Выполнение всех вспомогательных операций осуществляется вручную. Оператор также вручную управляет рабочими органа-ми оборудования в основных операциях и контролирует качество обработки.

В частично автоматизированном оборудовании все основные и часть вспомогательных операций, включая останов оборудования после обработки изделия, выполняется автоматически. Непосредственное участие оператора требуется для выполнения установочных, съемочных, контрольных или некоторых других вспомогательных операций (в зависимости от процента автоматизации машины), а также включения маши-ны в следующий цикл работы.

Полностью автоматизированное оборудование обеспечивает обработку изделия без участия человека. На долю оператора оставлены функции подготовки оборудования к работе и наблюдения за ее исправностью. Рабочий периодически контролирует качество обработки изделий и проводит подналадку механизмов.

Универсальное оборудование автосервиса в подавляющем большинстве своем относится к неавтома-тизированному или частично автоматизированному, исключение составляют многопрограммные моечные установки портального типа.

Система неавтоматизированных и (или) частично автоматизированных машин и аппаратов, расположенных в технологической последовательности, составляют поточную линию. Примером поточной линии в автосервисе является линия инструментального контроля технического состояния автомобиля при государ-ственном техническом осмотре, а в автотранспортных предприятиях — линия ЕО или ТО-1, ТО-2 автомоби-лей. Перемещение автомобилей по линии может осуществляться принудительно с помощью конвейерных устройств или своим ходом.

К автоматическим линиям в автосервисе относятся многопрограммные моечные установки туннельно-го типа модульной компоновки. На предприятиях автосервиса достаточно широко применяется технологическая и организационно-технологическая оснастки. Технологическая оснастка имеет второе название — технологические приспособления.

Как элемент технического обеспечения производственного процесса технологическое приспособление представляет собой отдельное устройство, предназначенное для использования в основных и вспомога-тельных технологических операциях совместно с оборудованием или самостоятельно с целью повышения производительности труда, увеличения мускульных усилий рабочего, а также улучшения качества выполняемой операции.

Приспособления, устанавливаемые на оборудовании и используемые для выполнения захватных, прижимных, установочно-съемочных, мерительных и других операций, по аналогии с общемашинострои-тельной терминологией носят название станочных. Эти приспособления в автосервисе применяются в гораздо меньшей мере, чем автономные, номенклатура которых чрезвычайно широка. К последним относятся различные съемники, оправки, винтовые приспособления для запрессовки-выпрессовки деталей, струбцины для сборки-разборки сборочных единиц с упругими деталями, контрольные шаблоны, надставки и др.

Организационно-технологическая оснастка предназначена для улучшения условий труда рабочих и повышения культуры производства. В эту группу входят тележки и передвижные контейнеры для инстру-мента, агрегатов и деталей, снимаемых с автомобиля, телескопические и поворотные кронштейны для инструмента, специальные передвижные стойки для диагностической аппаратуры и др.

Отдельную, достаточно широкую по номенклатуре группу технического обеспечения технологических процессов автосервиса составляют средства диагностики, измерения и контроля. Сюда входят стенды, приборы и инструмент.

Стенды автомобильные диагностические и контрольные представляют собой стационарное оборудование, предназначенное для общей или поэлементной диагностики систем автомобиля, например подвески или тормозной системы, а также для установления соответствия параметров автомобиля нормативным значениям.

Кроме этих стендов для контроля исправности, проверки работоспособности и обкатки после ремонта отдельных сборочных единиц и агрегатов автомобиля (двигатели, генераторы, топливная аппаратура и др.) на различных участках ПТС применяются агрегатные стенды, выполненные как стационарное оборудование, имитирующее работу систем автомобиля и снабженное необходимым комплектом измерительных приборов.

Современная приборная техника, используемая для диагностики и регулировки агрегатов и систем автомобилей, может быть разделена на две группы. В первую группу входят средства считывания, измерения и контроля структурных и функциональных параметров, во вторую — средства измерения физических величин или процессов, являющихся диагностическими параметрами.

Приборы первой группы, как правило, конструктивно и функционально совместимы с системой бортовой диагностики автомобиля и включают в себя сканеры и электронно-вычислительные машины с различной конфигурацией периферийных устройств. Приборы второй группы по своей сути практически ничем не отличаются от общетехнических приборов для измерения физических величин и процессов. К ним относят-ся компрессометры, осциллографы, мотор-тестеры и др.

Мерительный и контрольный инструмент, созданный для работ в системе автосервиса, имеет конст-руктивные отличия от общемашиностроительного инструмента аналогичного назначения, вызванные конструктивными особенностями объекта измерения или контроля — автомобиля, его агрегатов, сборочных еди-ниц и деталей. В эту группу входят люфтомеры, специальные линейки, динамометрические ключи, шаблоны и др. Классическим является разделение оборудования на группы по функционально-технологическим признакам.

Принято выделять следующие основные группы оборудования:

Уборочно-моечное;

Подъемно-транспортное;

Смазочно-заправочное;

Сборочно-разборочное;

Шиномонтажное и шиноремонтное;

Контрольно-диагностическое;

Окрасочно-сушильное;

Ремонтное для агрегатов и систем автомобиля.

Основное задание технолога состоит в создании высокопроизводительных технологических процессов.

В структурном плане технологический процесс состоит из совокупности технологических операций (ТО), необходимых для изготовления изделий в соответствии с требованиями нормативно-технических документов.

Технологический процесс разделяется на технологические операции . Установление содержания и последовательности выполнения операций входит в задание разработки технологического процесса.

Кроме технологических операций, выделяют вспомогательные операции . К ним относятся транспортировка, контроль, маркировка и т.д.

Организация гибкого производства, как и какого-либо другого, подчиняется таким общим принципам :

  • пропорциональности , то есть обеспечению одинаковой пропускной способности различных ГПС за счет возможности частичного перераспределения нагрузки между ними;
  • специализации , то есть распределению работ между различными предприятиями, цехами, участками, отдельными ГПС и гибкими производственными модулями (ГПМ) по технологическому методу изготовления;
  • стандартизации , которая является главным инструментом сокращения номенклатуры выпускаемых изделий, что позволяет ограничить номенклатуру изделий одного назначения, увеличить масштабы производства и содействует переходу от многономенклатурных ГПС к более производительным гибким автоматизированным производствам (ГАП);
  • ритмичности , т.е. обеспечению выпуска продукции по графику, что способствует сокращению брака;
  • прямоточности - в этом случае все материальные потоки производства перемещаются самым коротким путем;
  • автоматичность , т.е. автоматизация всех технологических операций, что способствует повышению производительности труда и качества выпускаемой продукции.

Однако основными принципами организации производства, раскрывающими целиком все возможности ГАП, являются:

  • непрерывность процессов , ликвидирующая или значительно сокращающая различные перерывы в производстве конкретного изделия;
  • параллельность процессов - предусматривается одновременное выполнение различных частей производственного процесса. Фактически происходит органическое слияние конструкторской и технологической подготовки производства, основных и вспомогательных процессов. Параллельность обеспечивается также централизацией и интеграцией процессов управления.

Основными параметрами технологического процесса являются:

  • точность (степень соответствия параметров изготовленного изделия тем параметрам, которые указаны в нормативно-технологической документации). Следует понимать, что причиной несоответствия являются производственные погрешности (систематические или случайные), и уметь анализировать причины их возникновения и результат воздействия их на ТП;
  • стабильность - свойство технологического процесса (ТП) сохранять значения показателей качества продукции в заданных границах на протяжении определенного времени;
  • производительность - свойство ТП обеспечивать выпуск определенного количества изделий на протяжении указанного промежутка времени. Различают производительность часовую, сменную, месячную и т.д.;
  • себестоимость продукции, которая определяется расходами на ее изготовление.

Кроме того, важным параметром является также технологичность конструкции изделий, которая может оцениваться как качественно, так и количественно, - путем расчета определенных показателей.

ПЕРЕГРУЗОЧНЫХ МАШИН

Технологические возможности перегрузочных машин определяются типом, назначением, конструктивными особенностями, размерными и скоростными параметрами, способом перемещения груза, способностью использовать разные грузозахватные приспособления и выполнять те или иные технологические операции. Основным перегрузочным оборудованием портов в настоящее время являются разного типа краны (портальные, козловые, мостовые, гусеничные, автомобильные, мобильные на пневмоходу, плавучие). Все краны при соответствующем исполнении механизма подъема могут перегружать генеральные, навалочные, насыпные и особые грузы.

Портальные краны - это универсальные перегрузочные машины, которые можно использовать для производства работ на причалах, складах, автомобильных и железнодорожных грузовых фронтах. Основная характеристика кранов - грузоподъемность. Размерные параметры портальных кранов: колея портала, габарит портала вдоль рельсов, максимальный вылет стрелы, высота подъема груза над головкой рельса и опускания ниже ее. Скоростные параметры - скорости движений. Все движения портальных кранов, кроме передвижения портала, являются рабочими, т. е. могут выполняться в течение каждого цикла перемещения груза. Передвижение портала является установочным движением и должно осуществляться только при переходе с одного места работы на другое. Важной характеристикой портальных кранов является способность механизма подъема работать в грейферном режиме двумя канатами либо двумя парами канатов. Она определяет возможность использования крана для перегрузки навалочных и насыпных грузов грейфером, а также применения различных управляемых захватных устройств для генеральных и особых грузов, привод которых осуществляется при работе механизма подъема в грейферном режиме.



Достоинствами портальных кранов являются: их универсальность по грузу и месту работы, значительная гибкость во взаимодействии между собой и с другими машинами на складской площадке, представляющей совместную зону обслуживания. Последнее качество позволяет успешно подменять портальные краны в период ремонта без образования «мертвых зон», а также дает возможность передавать груз непосредственно от одного крана другому в различных комбинациях и концентрировать, при необходимости, на небольшом участке работ сразу несколько кранов.

Недостатки портальных кранов: большая высота подвеса груза, отсутствие (как правило) пространственной запасовки канатов и: ложность стабилизации положения груза при повороте крана, что в комплексе затрудняет автоматизацию управления краном, вызывает значительное раскачивание и вращение груза вокруг вертикальной оси подвеса, весьма усложняет применение автоматических и управляемых захватов для генеральных грузов. Кроме того, портальные краны по сравнению с козловыми и мостовыми более сложны по конструкции, имеют большую массу, энергоемкость и стоимость в постройке и обслуживании.

Козловые и мостовые краны в морских портах обычно обслуживают склады, железнодорожные и автомобильные грузовые фронты. На причалах их используют реже. Основная характеристика - грузоподъемность. Размерные параметры - колея (пролет моста), вылет консолей, габаритный размер вдоль рельсов, высота подъема груза. Скоростные параметры - скорости движений. Все движения являются рабочими.

Козловые и мостовые краны по сравнению с портальными имеют меньшую высоту подвеса груза, отсутствует движение поворота крана, для них легче решать вопросы пространственной запасовки канатов. Вследствие этого значительно меньше раскачивание груза, лучше стабилизация его положения, проще автоматизация управления и использование автоматических и управляемых захватов. Эти краны более просты, чем портальные, по конструкции, имеют меньшую массу, энергоемкость и стоимость в постройке и эксплуатации. Основной недостаток козловых кранов - меньшая гибкость по сравнению с портальными во взаимодействии между собой и с другими машинами на складских и оперативных площадках. Именно по этой причине на причалах козловые краны используют редко, в основном для перегрузки однородных навалочных и лесных грузов. Мостовые краны предназначены для обслуживания крытых помещений.

Гусеничные, пневмоколесные и автомобильные краны в портах целесообразно использовать для обслуживания тыловых складов и грузовых фронтов, расположенных вне зоны действия рельсовых кранов и не требующих высокой интенсивности производства работ. При этом гусеничные краны более приспособлены для работы на площадках с грунтовым покрытием. Основная характеристика - грузоподъемность. Размерные параметры - вылет стрелы, габаритные размеры в плане и наименьший радиус поворота ходовой части. Если краны имеют выносные опоры (аутригеры), то отдельно учитывают размеры с аутригерами в рабочем положении. Скоростные параметры - скорости движений. Все движения крана можно использовать как рабочие, кроме изменения вылета стрелы, которое некоторые краны не могут производить с поднятым грузом. Если масса поднимаемого груза приближается к номинальной грузоподъемности крана и требуется использование аутригеров, передвижение крана нельзя использовать как рабочее движение.

По сравнению с рельсовыми гусеничные, автомобильные и пневмоколесные краны имеют, как правило, значительно меньшую производительность, для них необходимы широкие, густо расположенные проезды на обслуживаемой территории, что существенно ухудшает полезное использование площади складов и грузовых фронтов.

Рис.7. Причальный контейнерный перегружатель

Рис. 8. Портальный погрузчик для крупнотоннажных контейнеров

Плавучие краны в портах предназначены для производства работ на судах и прикордонной территории причалов. К их характеристике относят грузоподъемность, вылет стрелы за борт понтона, высоту подъема груза над уровнем воды и опускания ниже этого уровня, размеры понтона в плане, осадку с грузом, удельную нагрузку на палубу понтона, наличие либо отсутствие движения поворота стрелы, способность изменять вылет стрелы с поднятым грузом, количество подъемных крюков и возможность их параллельного использования, наличие либо отсутствие специальных механизмов для разворота груза вокруг вертикальной оси. К скоростным параметрам (кроме скорости подъема груза, изменения вылета стрелы, поворота стрелы) относят еще скорость хода (если кран самоходный).

Крановые перегружатели используют в портах в достаточно большом количестве. Они представляют собой специальные подъемно-транспортные машины для перегрузки определенных грузов на специальных технологических комплексах. Применяют их обычно на причалах. Основные характеристики, кроме типа и назначения, - грузоподъемность, размерные параметры и скорости рабочих и установочных движений. У таких машин движение поворота вообще отсутствует, либо оно является установочным движением. В отличие от портальных, гусеничных, пневмоколесных, автомобильных и плавучих кранов перегружатели имеют значительно большую производительность и относительно легко поддаются автоматизации управления. Перегружатели предназначены для работы автоматическими и управляемыми из кабины грузозахватными механизмами.

Автопогрузчики (фронтальные, боковые, фронтально-боковые, портальные и специальные) широко используют в портах на судовых, складских, вагонных, автотранспортных и внутриконтейнерных операциях с генеральными, лесными и особыми грузами. К их характеристике относят: тип, род привода (от двигателя внутреннего сгорания или электропривод с питанием от аккумуляторной батареи), тип колес (грузошины либо пневмошины), грузоподъемность, максимальная высота подъема груза, строительная высота и габаритные размеры машины в плане, высота подъема без увеличения строительной высоты машины (величина свободного подъема), расстояние от передней спинки вил до центра тяжести груза при номинальной грузоподъемности и расстояние от оси передних колес до передней спинки вил (либо максимальный грузовой момент), минимальный радиус поворота, масса машины порожнем и с грузом, максимальная нагрузка на оси, скорости всех движений, давление в гидравлической системе, количество секций в распределителе для подключения грузозахватных органов, конструкция мест крепления захватных органов, наличие нейтрализатора либо дожигателя выхлопных газов (для машин с приводом от двигателя внутреннего сгорания) и продолжительность работы погрузчика без смены либо перезарядки батареи (для машин с электроприводом). Наиболее распространены фронтальные погрузчики. При грузоподъемности до 2 т их в основном используют в вагонах, автомашинах, контейнерах, на ролл-трейлерах, а также в твиндеках судов. Эти же погрузчики, но с большей высотой подъема (как правило, с двойной телескопией в грузоподъемнике) могут успешно работать в трюмах судов и на складах. Автопогрузчики грузоподъемностью от 2 до 10 т предназначены для работы в трюмах судов и на складах. Машины большей грузоподъемности применяют на складских работах. Боковые, фронтально-боковые и портальные погрузчики (рис. 8) предназначены для перегрузки некоторых грузов (контейнеров, леса и стального проката) на складах, их используют чаще всего на специальных комплексах.

Погрузчики с приводом от двигателя внутреннего сгорания из-за большей динамичности и скорости рабочих движений, неограниченной продолжительности непрерывной работы в течение всей смены и даже суток имеют при прочих равных условиях в 2-4 раза большую производительность, чем электропогрузчики. Поэтому их чаще, чем электропогрузчики, применяют на портовых перегрузочных работах, характеризующихся высокой интенсивностью, несмотря на сложность защиты окружающей среды от выхлопных газов. При грузоподъемности более 1,5 т, как правило, применяют погрузчики с пневмошинами.

На внутренних транспортных операциях, а также на судовых операциях при обработке ролкеров используют различные универсальные и специальные автотранспортные средства: автомашины бортовые с двухосными и одноосными прицепами и полуприцепами, автотягачи с трейлерами, специальные портовые тягачи с контейнерными тележками и полуприцепами, колесные тракторы с двухосными прицепами и трейлерами. К технологической характеристике этих машин относят тяговое усилие, габаритные размеры, массу и нагрузку на оси, минимальный радиус поворота, размеры грузовой платформы и оснащенность ее средствами крепления груза, тип сцепного устройства, способность машины двигаться на рабочих скоростях передним и задним ходом, скорость передвижения и других рабочих движений.

Некоторые колесные тракторы с ковшами и отвалами различного типа успешно используют на судовых работах с навалочными и насыпными грузами (для подачи груза в подпалубное пространство или обратно). Их характеристику составляет тип, назначение, масса машины и нагрузка на оси, габаритные размеры, минимальный радиус поворота, скорости движений, вместимость и тип ковша.

Гусеничные тракторы, как правило, применяют с прямым или обратным отвалом в качестве бульдозеров на складских и судовых работах с навалочными и некоторыми насыпными грузами. Их технологическая характеристика: тяговое усилие, габаритные размеры и масса.

В составе специальных портовых перегрузочных комплексов для навалочных и насыпных грузов используют различные специальные подъемно-транспортные машины: причальные погрузочные и разгрузочные машины, конвейеры, штабелеобразователи, штабелеразборщики, элеваторы, вагоноопрокидыватели и др. Их технологические возможности характеризуются типом, назначением, производительностью, расстоянием транспортирования, размерами зоны обслуживания, технологическими особенностями работы и габаритными размерами. Эти машины имеют весьма высокую производительность, в несколько раз или даже в несколько десятков раз превышающую производительность портальных кранов.

На судовых и вагонных операциях с навалочными и насыпными грузами применяют целый ряд специальных машин: МВС используют для выгрузки из крытых вагонов хлористого калия и других химических грузов насыпью, ПТС - для подачи навалочных грузов в подпалубное пространство универсальных сухогрузных судов, ПСГ - для обратной операции при выгрузке насыпных и навалочных грузов из подпалубного пространства на просвет люка и др. Эти машины характеризуются типом, назначением, производительностью, массой и габаритными размерами, расстоянием перемещения груза и некоторыми специфическими параметрами.

Широко распространен в портах пневмотранспорт. Его применяют для перегрузки насыпных грузов, в первую очередь зерновых. Машины пневматического транспорта подразделены на береговые стационарные и передвижные, плавучие и мобильные. Береговые имеют, как правило, электропривод от сети, плавучие - электропривод от дизель-генераторов, мобильные снабжены дизельным приводом либо электроприводом от сети. Береговые машины предназначены для работы в составе специальных перегрузочных комплексов, мобильные - для производства работ на универсальных комплексах, как правило, по прямому варианту из судов в вагоны или из судов в суда. Основным назначением плавучих пневмоперегружателей является перемещение груза из крупнотоннажных морских судов в лихтеры, баржи и другие речные суда малого тоннажа. Технологическую характеристику этих машин составляют, кроме типа, назначения и рода привода, еще производительность, расстояние перемещения груза, габаритные размеры, масса (для мобильных машин), степень автоматизации и продолжительность операций по сборке, настройке и демонтажу трасс трубопроводов. Береговые и плавучие машины имеют обычно в своем составе от двух до четырех технологических линий, высокую технологическую производительность каждой линии (100 т/ч и более) и высокую степень механизации и автоматизации основных технологических и подготовительно-заключительных операций. Мобильные машины при достаточно большой технической производительности (60-80 т/ч) имеют весьма низкую технологическую производительность (от 10 до 25 т/ч), являющуюся следствием наличия большого числа весьма трудоемких и длительных ручных операций по сборке, налаживанию и демонтажу трасс трубопроводов, при которых весьма сложно или вообще невозможно на практике выдержать требования к качеству трассы, выполнение которых необходимо для эффективной работы машины